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Introduction 

 

Unlike the previous chapter in this unit we will be dealing with equilibrium of supporting structure. 
The structures may consist of several sections. They form the supporting structures of bridges, 
pillars, roofs etc. It is important to have a basic knowledge of this topic as it concerns with the 
safety and stability of a several important structures. We will be studying about the various internal 
forces responsible for keeping the structures together. 

 

 

Following figure gives a basic idea of what we are going to study. The given figure is a normal diagram of a 

book shelf. The second figure shows the role of internal forces in maintaining the system equilibrium. Free 

body diagram of various components are shown. It is clear from the diagram that the forces of action and 

reaction between various parts are equal in magnitude and opposite in direction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

DEFINITION OF A TRUSS 

 

Am truss is a network of straight slender members connected at the joints. Members are essentially 

connected at joints. The every member has force only at extremities. Further for equilibrium the forces in a 

member reduce to two force member. Thus no moments only two force member. In general trusses are 

designed to support. Trusses are designed to support weight only in its plane. Therefore trusses in general 

can be assumed to be 2-dimensional structures. Further in case weight of individual member is to be taken 

into consideration, half of them are to be distributed at each of the pinned ends. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 
Figure below shows a sample truss. There are nine individual members namely DE, DF, DC, BC, 
BF, BA, CF, EF, FA. Structure is 2-dimensional structure, supported by pin joints at A and E.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Sometime a member may be given of a shape like:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In such a case take the line the line joining their ends as the line of action of force. 
 
 
 

 

ANALYSIS OF A TRUSS 

 

A truss needs to be stable in all ways for security reasons. Simplest stable truss ABC is shown in figure. 
 
 
 
 
 
 

 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The second diagram depicts that how instable the truss structure is. The truss ABCD can easily be 
deformed by application of the force F. Trusses constructed by adding triangles such as arms AC and 
CD to the above stable truss ABC are called simple trusses. No doubt simple trusses are rigid(stable). 
Further it is not always necessary that rigid trusses will necessary be simple. 

 

Let m be no. of members and n be number of joints. For a truss 
 

m<2n-3 deficiency of members, unstable ,fewer unknowns than equation.  
m= 2n-3 uses all the members,  

statically determinate m>2n-3 excess member , statically indeterminate, more unknown than 
equation 

 
 
 

 

METHOD OF JOINTS 

 

In the following section we will consider about the various aspects of trusses. Distribution 
of forces, reactions forces at pins, tension and compression etc. 

 

Step 1. Find the reaction at supporting pins using the force and the moment equations. 
 
 
 
 

 

  



  
 
 
 
 

 

Step 2. Start with a pin, most preferably roller pin,wher there are 2 or less than two unknowns. 
 

Step 3. Proceed in a similar way and try to find out force in different members one by one. 

 

Step 4. Take care of while labelling forces on the members. Indicate compression and tension 

clearly. Step 5. Finally produce a completely labelled diagram. 
 

Step 6.Try to identify the zero force members. It makes the problem simple. 
 
 

 

Compression Tension 

 
 
 
 
 

Above shown are the conditions of compression or tension, deceided as per the direction of force 
applied by the pin joints to the members. 

 

 

Example: Find the forces in the members AF, AB , CD, DE, EC and the reactin forces at A and D. CD = 3m.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Sol:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  



 
 
 
 

 

As per the type of joint the reaction forcces are shown below. 
 

Clearly Ax = O (balancing forces horizontally)  
Ay + Dy 

= 10 KN(balancing forces vertically) 

taking  
moment about D. 

 

MD = 10*3 – Ay *9 = 0 (zero for equlibrium) , therefore Ay = 10/3 KN , and Dy = 20/3 KN(10-10/3) 

 

Now we have drawn the free body diagram of the pin A. We have assumed force at pin A due to the 
members in some direction.  

 
 
 
 
 
 
 
 
 
 
 
 

 

From the given data we can conclude tanɵ= 4/3 , sinɵ= 4/5 , cosɵ = 3/5.  

Balancing forces vertically. FAF sin  = 10/3 . FAF  = 25/6 kN . 
 

Balancig forces horizontally,FAB  = FAF cos  = 2.5 kN . 

 

Note the direction of the indicated forces are those applied be members to the pin. Force applied 
by pin onto the members will have the same magnitude but in opposite direction. Therefore we can 
easily state that member AF is in compression and member AB is in tension. Further each member is 
a two force member implying that it will exert the same amount of force to the pin on the other end 
but will be opposite in direction. 

 

Now considering the joint D.  
 
 
 
 
 
 
 
 
 
 
 

 

Balancing forces vertically. FDE sin  = 20/3 . FA F = 25/3 kN . 



 
 
 
 
 
 

 

 

 

Balancig forces horizontally,FCD = FDE cos  = 5 kN . 
 

Therefore we can easily state that member DE is in compression and member CD is in tension. 
 

 

Now considering the joint C.  
 
 
 
 
 
 
 

 

Balancing forces vertically. FEC  = 10kN . 
 

Balancing forces horizontally. FBC  = 5kN . 
 

Therefore we can easily state both the members EC and BC are in tension. 

 

In case in the above given problem 10kN was placed some where else, then ae per the FBD at joint C there 

would be no vertical force to balance FEC. Hence force in EC would be zero. It is good to analyse the problem 

before hand and eliminate the zero force members, as they contribute nothing to the system. 
 

 

METHOD OF SECTIONS 

 

As the name suggests we need to consider an entire section instead of joints. When we need to find 
the force in all the members, method of joint is preferrable. For finding forces in few of the specific 
members method of joints is preferrable. Let us consider the same diagram as before.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 
 

 

We had been provided with the given system. We draw a axis aa’.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The axis should at max intersect three members. Then we separate the two sections apart. We can 
select any one of the part. We have just assumed he member to be in tension. We can find the 
reaction at supports. Now what we have done is divided the whole structure into two parts and 
taking into consideration various external reactions and member forces acting of one part. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 



 
 

 

Suppose we have to find FEF. It is sufficient to write the equation =0 (for equilibrium). To find FBC it is 
MB sufficient to write the equation of ME =0. Similarly we can also the equations Fx =0 ,Fy =0 , for the 
use equilibrium of the section under consideration. 

 
 
 

 

SOLVED PROBLEMS 

 

1. Following is a simple truss. Find the forces in the all the members by method of joints.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Sol: we have the following given setup. By applying simple geometry we get AD=2m and CD=4m. 
We also assume a cetrtain reaction forces at the bottom. At C we have rollers, therefore we have 
reaction only in vertical direction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  



  
 
 
 

 

Clearly Ax=0 (balancing forces horizontally) 

Ay+By=1 

0kN  
Tak 

ing MA =0 we get : 10*2=Cy*6,implies Cy= 10/3 kN 
 
 

 

clearly tan ɵ = 1.5 therefore sin ɵ =0.83, cosɵ =0.554 

  Balancing forces vertically FAB  sinɵ = 20/3 , FAB  = 8.032 

kN,compression Balancing forces horizontally 

FAC=FAC  cosɵ = 4.44kN , tension.  Considering joint 

C   
     

 
 
 
 
 
 
 
 

 
clearly tan α = 0.75 therefore sin α =0.6, cosα =0.8 Balancing forces vertically FBC sinα = 10/3 , FBC 

= 5.55 kN,compression  
Balancing forces horizontally FAC=-FAC  cosɵ = 4.44kN  

, tension(correctly verified). 
 

FAB  = 8.032kN(compression), FBC  = 5.55 kN,(compression )  
FA= 4.44kN , (tension) 

 

 
2. Find the reaction components at A and B. Also find the forces in each individual 
member, specify compression or tension. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Therefore Ay = 10-10/3 = 20/3 kN 
Considering joint A 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sol: let us assume  
the reacton forces as:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ax = -10kN(towards the left), Ay + By = 20kN . 

MA  = 0 gives : 10*8 = (By-20)*6 , By 
 

= 33.33kN , therefore Ay = -13.33kN (actualy downwards). 
Taking point A:  

 
 
 
 
 
 
 
 

 

cos α = 0.6,sin α = 0.8 . 
 
 
 
 

 

 



  
 
 
 

 

FAC  sinα = 13.33 ,FAC = 16.66kN.(tension) and FAB= 10+FACcos α =20kN(tension).  
 
 
 
 
 
 
 

 

cos ɵ = 0.83,sin ɵ = 0.55 . 

FBC  sinɵ = 

13.33 ,FBC  = 24.23kN.(compression) and FAB= FBCcos α =20kN(tension).(hence verified). 
 
 
 
 
 
 
 
 

3. Find the reaction components at A and C. Also find the forces in each individual 
member, specify compression or tension. Given AD=10in ,DC=7in , BD=8in.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Sol: let us assume the reacton forces as:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  



  
 
 
 

 

Cx = 500lb(towards the left), Ay + Cy = 0 .or, Ay = -Cy 

MA  = 0 gives : Cy*17 = 500*8 , Cy =  
235.3lb , therefore Ay = -235.3kN (actualy downwards). Taking 

point A:  
 
 
 
 
 
 
 

 

cos α = 0.78,sin α = 0.62 . 
FAB  sinα = 235.3 ,FAB 

 

= 380lb.(tension) and FAD= FABcos α 

=296lb(compression). Taking point D: 
 
 
 
 
 
 

 

FCD = 296lb(compression), FBD =0 lb (zero force member, should have 
been removed in the beginning itself) 

 

Taking point C:  
 
 
 
 
 
 
 
 
 

 

cos ɵ = 0.65,sin ɵ = 0.75 . 

FBC  sinɵ = - 

253.3,FBC  = -337.73lb.(compression). FCD = 500+FBC  cos ɵ = 296lb (compression). 
 
 
 

 

4. Find the forces in the members and the reaction forces. All relevent details are provided below. 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 

Sol: From the given figure we can conclude that triangle BCD is equilateral and triangle ABD is isoceles.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

clearly Cy =  
100N(balancing forces horizontally)  

 
 
 

 

MC  = 0 gives , T * = 100 * 12 or T = 230.9 N  , and Cx = -T = -230.9 N(towards the left). 
 

Considering point A :  
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 

cos α = 0.86,sin α= 0.5 . 
FAB  sinα =  

100,FAB  = 200N(tension). FAD =FAB  cos α = 172N (compression). 
 

 

Considering point D :  
 
 
 
 
 
 

 

ɵ = 60° 

FBD sinɵ = 0,FBD  
= 0 N(zero force member). FCD =FAD = 172N (compression). 

 

Considering point C :  
 
 
 
 
 
 
 
 

 

α = 0.5,sin α= 0.86 . 
FBC  sinβ =-  

100, FBC = -116.27N (compression). FCD =230.9 +FBC  cos β = 172N (compression)(verified). 

 

5. Find the forces in all the members of the of the following structure. Let the tension in the string be 
250lb. would it be possible to find the to solve the problem if the tension in the string was unknown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

Sol:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Balancing forces horizontally we get : Ax + 250 cos60 = 200 or Ax = 75lb.  
Balancing forces vertically we get : Dy-Ay= 250 sin 60 =  

 
 

 

216.50 ,  MD  =0, gives Ay * 12 = 200 * 

or Ay = 173.2 lb and Dy = 389.7 lb  

Lets consider the point A:  
   

 

cos 60 = 0.5,sin 60= 0.86 . 

FAB  sin60 = 

173.2,FAB  = 201.39lb(compression). FAD =FAB  cos 60-75 = 25.69lb(tension). 
 
 
 
 
 
 
 
 
 
 

Lets consider the point D:  
 
 
 
 
 
 

 

we just found out that FAD = 25.69lb 
 

balancing forces vertically we get:( FBD+FCD )sin60 = 
398.7 ,or, FBD+FCD = 450 balancing forces horizontally we get:( FBD-FCD )cos60 = -25.69 ,or, FBD -FCD= - 
51.38 or FBD= 199.31lb(tension) and FCD= 250.69lb(tension). 

 

 

At joint C we will find that FCD and T are almost equal and will cancel off. Therefore BC becomes 
a zero force member. 



 

NO. The problem cannot be solved if the tension wasn’t given, as it would introduce four unknowns in the 
systems. More than three unknowns will become difficulat to handel with just three equations. 

 

6. Using method of sections find forces in the members BC,EF .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Sol : let us first figure out the reaction force at D. Let the reaction force at D be Dy in vertically 
upward direction. 

 

Now we write the equation of MA =0, Dy *17 = 10*8 + 20*13 . 
 

Or Dy = 20Nm 

 

To proceed by the method of sections we need to deceide an axis. Let’s take an axis aa’ as 
shown in the figure below. 

 
 
 

 

After splitting into two sections we get:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We will take the right part into consideration. We have just assumed the direction of 
forces, they can turn out to be opposite. 

 

ME = 0 , gives FBC  * 6 = - 20*4  , or FBC  = -13.33N (member is in compression) 
 

MC  = 0 , gives FEF * 6 = 20*4 , or FEF = 13.33N (member is in tension as assumed). 
 

 

7. Using method of sections find forces in the member JI,CD,CI. All triangles are congruent. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Sol: We draw a section aa’.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After splliting the section we have:(we take the left part into consideration) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

 

tanα = 6.66 , sin α = 0.98 , cos α = 0.148 
 

MC =0,50*3–110*6-FJI *10=0,FJI =-51N. 
 

MI = 0, 50 * 4.5 – 110 *7.5 – 70*1.5 + FCD * 10 = 0 , FCD = 70.5N. 
 

Balancing forces horizontally: FCI cosα = -FCD - FJI = -70.5 + 51 = 19.5 N, or, FJI = 131.75N 

 
 
 
 
 
 

 

8. Find the force in members CG, FG, BG,BC. Use method of section to compute the 
result. Indicate the zero force member. BH = 4m , AH=HG=GF=FE = 3m, 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sol: As clearly visible DF is a zero force member. 
 

Ay + Ey = ( 20 -10 )kN = 10 kN. 
 

Ax=0(balancing forces horizontally) .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 

MA = 0; Ey * 12 = 10*3 + 20 *6 ;  
Ey = 12.5 

N , therefore Ay = - 2.5kN. 

We draw the section aa’  
and split the diagram into two parts. 

 
 
 
 

 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

taking the left part into consideration. 
 

MB= 0 ; FH G * 4 = - 2.5 * 3 , FH G = -1.875 kN 

MG=0;FBC *4=10*3, 

FBC  = 7.5 kN. 

Bala  
ncing forces horizontally : - 1.875 + 7.5 + FBG cos α =0 , or , FBG = - 9.375N. 

 

Considering point C: 20kN clearly FG = 20kN , since there are no vertical components of other  
forces. 

 

FCG 
 

9. Find the forces in members AD,DC,EF,CF,BD,BCof the following given truss. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Sol: Members AE and AB are zero force members therefore they can be eliminated from the system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ex=0 N 
 

Ey+Fy = - 50N ; ME = 0 = 150* 2 + Fy* 6 = 100 *4 : Fy = 50/3 N ,and also ,Ey = -200/3 N . 
 

Considering pin E: 
 
 
 
 
 

 

 



   
 
 
 
 
 
 
 
 
 
 
 
 
 

 

tan α = 1.5 , cos α =0.55 ,sinα = 0.83 ;  
 

FDE = 200/(3sin α) = 80.32N(compression) , FEF = FD E cosα = 44.17 N(tension). 
 

Considering pin B:  
 
 
 
 
 
 
 
 
 
 
 
 

due to the symmetrical setup : FBD = FBC and 2FBDcos 30=2FBCcos 30 
= 100 FBD= FBC = 57.73 N (both compression) 

 

 

Considering pin F: 
 

 cos ɵ = 0.8 , sin ɵ = 0.6 

 

FDF =44.17 / cos ɵ = 55.21 N(tension) , FCF = 50/3 - FD F sinɵ = - 16.46N(compression) 10. 
 

Find the reaction forces and force in CD,CE and EF using method of sections

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Sol: We have the following diagram.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ax = 250 N , By-Ay = 100 N, MA  = 0 = By * 12 = 250 * 10 + 100*12 ; or By = 308 N and Ay =208N. 
 

We divide the section as beloW



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Considering the lower part MC  = 0 ; (FEF+308)* 12 = 250 *10 , FEF  = - 100 N(compression) 
 

Considering the upper section : ME = 0 ; FCD=0 

 

At the joint E there is no horizontal force to counter balance the horizontal component of FCE. 

Therefore FCE = 0; 
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1. INTRODUCTION 
 
 

When an elastic body is deformed, work is done. The energy used up is stored in the 

body as strain energy and it may be regained by allowing the body to relax. The best 

example of this is a clockwork device which stores strain energy and then gives it up. 
 
 

We will examine strain energy associated with the most common forms of stress 
encountered in structures and use it to calculate the deflection of structures. Strain 

energy is usually given the symbol U. 

 

2. STRAIN ENERGY DUE TO DIRECT STRESS. 
 
 

Consider a bar of length L and cross sectional area A. If a tensile force is applied it 

stretches and the graph of force v extension is usually a straight line as shown. When the 

force reaches a value of F and corresponding extension x, the work done (W) is the area 

under the graph. Hence W = Fx/2. (The same as the average force x extension). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
 
 

Since the work done is the energy used up, this is now stored in the material 
as strain energy hence U = Fx/2 

 

The stress in the bar is = F/A hence F = A 
 

The strain in the bar is = x/δ hence x 
 

= δ 

 

For an elastic material up to the limit of proportionality, / = E (The modulus of 
 

elasticity) hence = /E 

← = A δ/2 = 
2

AL/2E 
 

Substituting we find 
 

The volume of the bar is A L so U = (  
2

/2E ) x volume of the bar 
 

 

 

EX: A steel rod has a square cross section 10 mm x 10 mm and a length of 2 m. Calculate 

the strain energy when a stress of 400 MPa is produced by stretching it. Take E = 200 GPa 

 

SOLUTION 
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A = 10 x 10 = 100 mm
2

  or 100 x 10
-6

 m
2

. V = AL = 100 x 10
-6

 x 2 = 200 x 10
-6

 m
3

. 

= 400 x 10
6

 N/m
2

 and E = 200 x 109 N/m
2

 

2 (400 x 10 6 ) 2 
− 

 

6  

    
 

        

9 

U = 2E x Volume = 2 x 200 x 10 x200x10 = 80 Joules 

 

3. STRAIN ENERGY DUE TO PURE SHEAR STRESS 
 
 

Consider a rectangular element subjected to pure shear so that it deforms as shown. 

The height is h and plan area A. It is distorted a distance x by a shear force F. The 

graph of Force plotted against x is normally a straight line so long as the material 

remains elastic. The work done is the area under the F - x graph so W = Fx/2  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 

 

The work done is the strain energy stored hence U = Fx/2  
The shear stress is = F/A hence F = A 

 

The shear strain is γ = x/h hence x = γh 

 

Note that since x is very small it is the same length as an arc of radius h and angle 
 

γ. It follows that the shear strain is the angle through which the element is distorted. 

 

For an elastic material /γ = G (The modulus of Rigidity) hence γ= /G 

Substituting we find U = Aγh/2 = 
2

Ah/2G 
 

The volume of the element is A h so ← = ( 
2

/2G ) x volume 

 

Pure shear does not often occur in structures and the numerical values are very small 

compared to that due to other forms of loading so it is often (but not always) ignored. 

 

EX: Calculate the strain energy due to the shear strain 
in the structure shown. Take G = 90GPa  

 

SOLUTION  

A = πd
2

/4 = π x 0.12
2

/4 = 11.31 x 10
-3

 m
2

 

= F/A = 5000/ 11.31 x 10
-3

 = 56.55 
2
 Volume = A h = 11.31 x 10

-3
 x 0.5 

2
-3 m3N/m

Volume=5.65x10 

← = (   /2G ) x volume 15 

U = {(56.55)
2

/(2 x 90 x 10
9

)} x 5.65 x  
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10
-3

 U = 100.5 x 10
-12

 Joules 
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Note that the structure is also subject to 

bending. The strain energy due to bending 

is covered later. 
 

Figure 3 

 

4. STRAIN ENERGY DUE TO TORSION 
 
 

Consider a round bar being twisted by a torque T. A line along the length rotates through 

angle γ and the corresponding radial line on the face rotates angle θ. γ is the shear strain on 

the surface at radius R.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4 

 

The relationship between torque T and angle of twist θ is normally a straight line. The work 

done is the area under the torque-angle graph. For a given pair of values → = Tθ/2 

 

The strain energy stored is equal to the work done hence ← = 
Tθ/2 from the theory of torsion (not covered here) θ = Tδ/GJ 

 

G is the modulus of rigidity and J is the polar second moment of area. J = πR
4

/2 for a solid 

circle. 

Substitute θ = Tδ/GJ and we get ← = T
2

L/2GJ 

 

Also from torsion theory T = J/R where is maximum shear stress on the surface. 

 

Substituting for T we get the following. 

← = ( J/R)
2

/2GJ = 
2

JL/2GR
2

 Substitute J = πR
4

/2  

← = 
2

πR
4

L/4GR
2

 = 
2

πR
2

L/4G 
 

The volume of the bar is Aδ = πR
2

L so it follows that: 
 

U = ( 
2

/4G) x volume of the bar. ( is the maximum shear stress on the surface) 

 

EX: A solid bar is 20 mm diameter and 0.8 m long. It is subjected to a torque of 30 Nm. 

Calculate the maximum shear stress and the strain energy stored. Take G = 90GPa 

 

SOLUTION 
 

R = 10 mm = 0.01 m L = 0.8 m 

A = πR
2

 = π x 0.01
2

 = 314.16 x 10
-6

 m
2
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Volume of bar = AL = 314.16 x 10
-6

 x 0.8 = 251.3 x 10
-6

 m
3
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4 4   

J = πR /2 = π (0.01) /2 = 15.7 x 10
-9

 m
4

   

= TR/J = 30 x 0.01/15.7 x 10
-9

 = 19.1 x 10
6

 N/m
2

   

2 6 2 9 -6 
U = (  /4G) x volume of the bar = {(19.1 x 10   )/(4 x 90 x 10  )} x 251.3 x 10 

U = 0.255 Joules 

 

A helical spring is constructed by taking a wire of diameter d and length L and coiling it 
into a helix of mean diameter D with n coils. Show that the stiffness of the helical spring  

shown below is given by the formula F/y = Gd/8nD
3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5  

SOLUTION 

 

When a force F is applied to the end it deflects down by a distance y. Looking at 
the bottom coil, it can be seen that a torque T = FD/2 is twisting the cross section 
of the wire. This torsion is transmitted throughout the entire length of the wire. 

 

Starting with the strain energy due to torsion we have: 
2 

U = (  /4G) x volume of the bar             
 

And substituting V = AL and = Td/2J        
 

 2                  
 

 Td                
T
2

πd
4

 
 

       

2 2 
         

πd 2 

 
 

   2J       T2   2    
 

U = 
  

   

x AL = T d  x AL =  d   

x x L = U = 
 

x L 
 

    

 

  

       

2  

  

4G 
 2 

16GJ 
2 

4 
 

     16GJ      64GJ 
 

Since J =  πd
4

 this reduces to U =  T
2

  x L     
 

 

32 
       

 

            2GJ        
 

 

The work done by a force F is ½ Fy. Equating to U we get: 

Fy    T
2

     F  (D/2)2   F
2

D
2

  
 

2 

                

8GJ  x L 

 

   2GJ x L =   2GJ   
 

            4G  
πd

4
     

 

                 4     

                       
 

F  
= 

 4GJ 
= 

     32  
= 

 Gd 
 

                 

 

   

 

y 
 2   

LD 
2    2   

 

  LD         8LD 
 

    

= 
  

Gπd
4

  and substitute L = nπD 
 

      
 

 y  8(nπD)D 
2            

 

               
 

F = Gd
4

                
 

  

8nD
3
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This is the well known equation for the stiffness of a helical spring and the same 
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This is the well known equation for the stiffness of a helical spring and 
the same formula may be derived by other methods. 

 

5. STRAIN ENERGY DUE TO BENDING. 

 

The strain energy produced by bending is usually large in comparison to the other 
forms. When a beam bends, layers on one side of the neutral axis are stretched and 
on the other side they are compressed. In both cases, this represents stored strain 
energy. Consider a point on a beam where the bending moment is M.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6 

 

Now consider an elementary layer within the material of length ∆x and thickness dy 

at distance y from the neutral axis. The cross sectional area of the strip is dA. 

 

The bending stress is zero on the neutral axis and increases with distance y. This is 
tensile on one side and compressive on the other. If the beam has a uniform section 
the stress distribution is as shown.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7 

 

Each elementary layer has a direct stress ( ) on it and the strain energy stored has been 

2 

shown to be U = ( /2E ) x volume (in section 2) 
 

The volume of the strip is ∆x dA 
 

 2 
 

The strain energy in the strip is part of the total so du = (   /2E )∆x dA 
 

21 

= My/I where I is the second moment of 
 

From bending theory (not covered here) we have 
 

area.  
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Substituting for we get 

 (My/I) 

2E 

2  

∆x dA and in the limit as ∆x   dx 

 

du = 
 

 

 
 

 (My/I)2 
dx dA = 

M
2 

 

du = dx 
  2 2 

y dA 2E 2EI 
 

du = {(My/I) /2E }∆x dA 
 

The strain energy stored in an element of length dx is then 

u = 
 M2 2 

y dA and by definition I = 
2 

 

 2 dx  y dA so this 
 

 2EI  ∫  ∫ 
 

simplifies to    
   

u = M 
 

2 
 

dx 
2E 

I  
In order to solve the strain energy stored in a finite length, we must integrate with 
respect to x. 

1 ∫M2dx 

For a length of beam the total strain energy is U = 2EI  
 

The problem however, is that M varies with x and M as a function of x 
has to be substituted. 

 

EX: Determine the strain energy in the cantilever beam shown. The flexural stiffness EI 

2 

is 200 kNm .  
 
 
 
 
 
 
 
 

 

Figure 8 
 

SOLUTION 

This is a bending problem so  U = 2EI
1
 ∫

M2dx
 

 
 

The beam is a simple cantilever so the bending moment at any distance x 
from the end is simply M = -800 x (The minus sign for hogging makes no 
difference since it will be squared) 

4    4  4 
 

U = 
1 ∫M

2
dx = 

 1 ∫(-800x)

2
 dx = 

1 

 ∫640000 x

2
dx 

 

2EI  2EI 2EI 
 

0    0  0 
 

640000 
   

640000 
4 

 

 4 2  4 x
3
 

 

U =   x  dx =       
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2 x 2 x 10 
5

 2 x 2 x 10 
5

 3 
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0 0 0 
 

640000  4 3   
 

U =     −0 = 34.13 Joules  
 

2 x 2 x 10
5

 

    

 3  
 

 

6. DEFLECTION 

 

The deflection of simple structures may be found by equating the strain energy to 
the work done. This is covered in detail later but for the simple cantilever beam it 
can be demonstrated easily as follows. 

 

EX: Calculate the deflection for the cantilever beam in W.E. No.4. 
 

SOLUTION 

 

The deflection of the beam y is directly proportional to the force F so the 
work done by the force is W = Fy/2 (the aea under the F – y graph). 

 

Equate the strain energy to the work done and Fy/2 = 34.13  

y = 34.13 x 2/F  
y = 34.13 x 2 /800 = 0.085 m 

 

We can check the answer with the standard formula for the deflection of a 
cantilever (covered in the beams tutorials).  

3  3 
 

FL 800 x 4 
 

  

3 
 

  
  

y = 3EI = 3 x 200 x 10 = 0.085 m 

 

7. HARDER BEAM PROBLEMS 

 

When the bending moment function is more complex, integrating becomes more 
difficult and a maths package is advisable for solving them outside of an 
examination. In an examination you will need to do it the hard way. For example, 
the bending moment function changes at every load on a simply supported beam 
so it should be divided up into sections and the strain energy solved for each 
section. The next example is typical of a solvable problem. 

 

EX: Calculate the strain energy in the beam shown and determine the deflection under 

2 

the load. The flexural stiffness is 25 MNm .  
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Figure 9 
 

 

SOLUTION 

 

First calculate the reactions by taking moments about the ends. 
 

RB x 4 = 50 x 3 RB = 37.5 kN 

RA x 4 = 50 x 1 RA = 12.5 kN 

Check that they add up to 50 kN. 

 

The bending moment equation is different for section AB and section BC so the 

solution must be done in 2 parts. The origin for x is the left end. First section AB 
 

M = RA x = 12 500 x 

 
3 3 

 

U = 
1 

 ∫M
2

dx = 
1 ∫(12500x)

2
 dx 

 

2EI 2EI 
 

0 0 
  

2 3 
2 

2 3 3 
 

(12500)   (12500) x  
 

   

 
∫ x  dx = 

    
 

U = 2 x 25 x 10 2 x 25 x 10 3   
 

2 
0
 3      0 

 

(12500)   3       
 

U = 

   

3 

 

−0 = 28.125 Joules 

   
 

2 x 25 x 10 6       
 

 

Next solve for section BC. To make this easier, let the origin for x be 
the right hand end.  

 
 
 
 
 
 
 
 
 
 
 

 

         Figure 10 
 

M = RB x = 37 500 x 
1 

     
 

1       
 

U = 
1 ∫M

2
dx = 

1 ∫(37500x)

2
 dx 

  
 

2EI 2EI   
 

0  0      
 

2 1 
2 

 2   3 
1  

     

(37500)  x 
 

 

(37500) ∫ 

   
 

U = 
 

x  dx = 
      

2 x 25 x 10 6 2 x 25 x 10 6   3  
 

2 0         0 
 

(37500) 1  3        
 

U = 2 x 25 x 10 
6

  3 −0 = 9.375 Joules   
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The total strain energy is U = 37.5 J 

The work done by the application of the load is Fy/2 = 50 000y/2 

 

Equating y = 0.0015 m or 1.5 mm. 

 

EX: The diagram shows a torsion bar held rigidly at one end and with a lever 
arm on the other end. Solve the strain energy in the system and determine 
the deflection at the end of the lever arm. The force is 5000 N applied 
vertically. The following are the relevant stiffnesses. 

2 

Lever EI = 5 Nm  . 
2 

Bar EI = 60 kNm . 

2 

Bar GJ = 50 kNm .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 12 
 

SOLUTION  
 

   
 

The stresses to be considered are Bending in the lever. 
 

  Bending in the bar. 
 

LEVER 

Torsion in the bar. 
 

 
 

Make the origin for x as shown.  
 

The bending moment is M = Fx  
  

 
 
 
 
 

 

      Figure 13       
 

1 0.2 1  0.2 F 2  0.2  F 

2
 x 3 0.2 

 

U = 
 

∫M
2

dx = 
 

∫(Fx)
2

 dx = 
  

∫x
2

dx = 
     

 

2EI 2EI 2EI  2EI    3 
 

  0 0    0   0 
 

  

F
2

 

3    -9  2       
 

U = [0.2   −0] = 266.7 x 10 F (numeric value 6.67 J) 
  

BAR 
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Viewed as shown we can see that the force F acts at the end of the 
bar as it is transmitted all along the length of the lever to the bar.  

 
 
 
 
 
 

 

          
2 

Figure 14 
2 3 

 
 

1 
    

1 0.4 
    

 

0.4     F0.4   F x 0.4 
 

U =  ∫M
2
dx =     ∫(Fx)

2 dx =  ∫x
2
dx =       

 

  2EI   2EI    2EI   2EI 3  
 

   0    0  0     0 
 

U = F
2

   [0.4    −0] = 177.7 x 10 F (numeric value 4.44 J) 
 

  
2 x 60 x 10 

3              
 

  x 3            
  

TORSION OF BAR  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Figure 15 
 

The torque in the bar is T = F x 0.2  
 

For torsion      
 

2  2 2   
 

U = T  L = 0.04F = 0.04F  x 0.4 =160 x 10 
−9

 F
2
 (numeric value 4 J) 

 

 

2GJ 
  

2GJ  2 x 50000  
 

The total strain energy is then (266.7F
2

 + 177.7 F
2

 + 160 F
2

) x 10
-9

 

-9  2 

U = 605 x 10 F 
 

The work done is Fy/2 so equating 

-7 

y = 2 x 6.05 F x 10 

-7 

y = 12.1 x 5000 x 10 = 0.00605 m or 6.05 mm 

 

8. APPLICATION TO IMPACT LOADS 

 

When a load is suddenly applied to a structure (e.g. by dropping a weight on it), 

the stress and deflection resulting is larger than when a static load is applied. 

 



 
  
 
 
 
 
 

 

Consider a mass falling onto a collar at the end of a bar as shown. The bar 
has a length L and a cross sectional area A. The mass falls a distance z.  

 

At the moment the bar is stretched to its maximum 

the force in the bar is F and the extension is x. 
 

The corresponding stress is = 

F/A The strain is = x/L. 
 

The relationship between stress 

and strain is E = / hence x = L/E 
 

2 

The strain energy in the bar is U = AL/2E 
 

The potential energy given up by the falling mass is  
P.E. = mg(z + x) 

 

 

  Figure 19  

8.1 SIMPLIFIED SOLUTION  
    

If the extension x is small compared to the distance z then we may say  P.E. = mgz 

    2 

Equating the energy lost to the strain energy gained we have mgz =AL/2E 

Hence = 2mgzE  

   AL   
 

8.4 SUDDENLY APPLIED LOADS 

 

A suddenly applied load occur when z =0. This is not the same as a static 
load. Putting z = 0 yields the result: 

 

x = 2 xs 
 

It also follows that the instantaneous stress is double the static stress. 

 

This theory also applies to loads dropped on beams where the appropriate 
solution for the static deflection must be used. 

 
 
 
 
 

 

EX: A mass of 5 kg is dropped from a height of 0.3 m onto a collar at the end of a bar 20 

mm diameter and 1.5 m long. Determine the extension and the maximum stress induced. 

E = 205 GPa. 
SOLUTION  

 2 -6 2 

A = π x 0.02 /4 = 314.159 x 10 m . 
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   9 -6 
 

xs = MgL/AE = 5 x 9.81 x 1.5 /(205 x 10 x 314.159 x 10  ) = 1.142x 
 

-6  ½   
 

10   x = xs + - 6 xs{1 + 2z/xs}-6 -6 ½ 
x 

 

x = 1.142 x 10  + 1.142 x 10 {1 + 2 x 0.3/1.142 x 10  } 
 

- 6     
 

= 828.9 x 10 m 

- 6 

  
 

  9  
 

= x E/L = 828.9 x 10 x 205 x 10 /1.5 = 113.28 MPa 

 

9. CASTIGLIANO'S THEOREM 

 

Castigliano takes the work so far covered and extends it to more complex 
structures. This enables us to solve the deflection of structures which are 
subjected to several loads. Consider the structure shown.  

 

 

The structure has three loads applied to it. 
 

Consider the first point load. If the force 

was gradually increased from zero to F1, 
the deflection would increase from zero to 

y1 and the relationship would be linear 
as shown. The same would be true for 
the other two points as well. 

 
 
 
 

 

Figure 20  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 21 

 

The work done by each load is the area under the graph. The total work is 
the sum of the three and this is equal to the strain energy hence: 

W = U = ½ F1y1 + ½ F2y2 + ½ F3y3 ............................ (A) Next 

consider that F1 is further increased by F1 but F2 and F3 remain unchanged. The  
deflection at all three points will change and for simplicity let us suppose 

that they increase as shown by y1, y2 and y3 respectively. 
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Figure 22 
 

The increase in the work done and hence the strain energy U is represented by the 
shaded areas (the increase in the areas) under the graphs. Note the first one is a tall 
rectangle with a small triangle on top and the other two are just tall rectangles. 

 

U = F1 y1 +  F1 y1/2+ F2 y2 + F3 y3 

 

The second term (the area of the small triangle) is very small and is ignored. 
 

U = F1 y1 + F2 y2 + F3 y3 ............................(B) 

 

Now suppose that the same final points were arrived at by the gradual 
application of all three loads as shown.  

 
 
 
 
 
 
 
 
 
 
 

 

Figure 23 

 

The work done and hence the strain energy is the area under the graphs. 
 

U = ½ (F1 + F1)(y1 +  y1) + ½ (F2)(y2 +  y2) + ½ (F3)(y3 +  y3) .........(C) 

 

The change in strain energy is found this time by subtracting (A) from (C). This may 
be equated to (B). This is a major piece of algebra that you might attempt yourself. 

 

Neglecting small terms and simplifying we get the simple result y1 = U/  F1 

Since this was found by keeping the other forces constant, we may express the equation 
in the form of partial differentiation since this is the definition of partial differentiation. 

 

y1 =∂U/∂F1 

 

If we repeated the process making F2 change and keeping F1 and F3 constant we get: 
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y2 =∂U/∂F2 

 

If we repeated the process making F3 change and keeping F1 and F2 constant we get: 
 

y3 =∂U/∂F3 

 

This is Castigiano’s theorem – the deflection at a point load is the partial 

differentiation of the rain energy with respect to that load. 

 

Applying this is not so easy as you must determine the complete equation for the 
strain energy in the structure with all the forces left as unknowns until the end. 

 

If the deflection is required at a point where there is no load, an imaginary force 
is placed there and then made zero at the last stage. 

 

EX: The diagram shows a simple frame with two loads. Determine the deflection at both. 

2 

The flexural stiffness of both sections is 2 MNm .  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24  

SOLUTION 

 

It is important to note from the start that section AB bends and the bending moment 

at B turns the corner and section BC bends along its length due to both forces. Also, 

section BC is stretched but we will ignore this as the strain energy will be tiny 

compared to that produced by bending. Consider each section separately. 
 

SECTION AB Measure the moment arm x from the free end.  
 
 
 
 
 
 
 
 
 
 

 

Figure 25 
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M = F1 x  (x measured from the free end) 

1 0.3   1 0.3 2   2  0.3 
 

U =   M
2

dx =    (F x) dx = F1  x
2

dx 
 

 2EI ∫   2EI ∫ 1   2EI ∫ 
 

2 
0   0  

2 
   0 

 

x 3 

 2      
 

 F 0.3   F  0.3     
 

         
 

1     1       
 

U = 2EI  3  0 = 2 x 2 x 10
6

 3  −0  
 

  

9 
         

 

  2  
Joules 

      
 

U = 2.25 x 10 F        
  

SECTION BC 

 

The bending moment at point B is 0.3 F1. This is carried along the section BC as a 

constant value. The moment am x is measured from point B. The second force produces 
 

additional bending moment of F2 x. Both bending moments are in the same direction so 

they add. It is important to decide in these cases whether they add or subtract as 
deciding whether they are hogging (minus) or sagging (plus) is no longer relevant.  

 
 
 
 
 
 
 
 
 
 
 

 

Figure 26 
 

M = 0.3 F1 + F2 x       
0.5 

         
0.5 

      
 

  0.5                       
 

U = 

1 ∫M

2
dx =  

1 

 ∫(0.3F1 + F2x)
2
 dx = 2EI 

1 ∫{(0.3F1  )
2

 +(F2 
2

x
2

  ) +(0.6F1F2x)}dx 
 

2EI 2EI  
 

  0        0          0        
 

 

1 

0.5        
2 

   

}dx 

  

1 

 
2 

2 3   2 0.5 
 

 
2 

 
2 

        
F2 x   

0.6F1F2x  

                
 

U = 
2EI 

∫{0.09F1 x + F2  x   +0.6F1F2 =   0.09F1  x +   + 
2 

 
 

 
0 

             2EI    3    
 

           3 2       2     0 
 

  

1 

          

0.6F F 12 

        
 

U =   0.09F
2
    + 0.5 F 2 +  x 0.5       

 

            

 

             

 2 x 2 x 10 6    1     3  2           
 

  2   -9       2 -9       -9   
 

U = 11.25F1 x 10 + 10.417F2  x 10  + 18.75 F1F2x 10      
 

The total strain energy is                 
 

  2   -9       2  -9     -9   -9  2 
 

U = 11.25F1 x10 + 10.417F2 x10 + 18.75 F1F2x10    + 2.25 x10F1 
 

  2   -9       2 -9      -9    
 

U = 13.5F1 x10  + 10.417F2 x 10 + 18.75 F1F2 x 10      
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To find y1 carry out partial differentiation with respect to F1. 

-9 -9 

y1 = U/ F1 = 27F1 x 10 + 0 + 18.75 F2 x 10 

 -6 

Insert the values of F1 and F2 and y1 = 7.8 x 10 m 

To find y2 carry out partial differentiation with respect to F2. 

 -9 -9 

y2 =  U/ F2 = 0 + 20.834F2 x 10 + 18.75 F1 x 10Insert the values of F1 and F2 

 -6  

and y2 = 7 x 10   m  

 Three Hinged Arches 
 

32.1 Introduction 

 

In case of beams supporting uniformly distributed load, the maximum bending moment 

increases with the square of the span and hence they become uneconomical for long 

span structures. In such situations arches could be advantageously employed, as they 

would develop horizontal reactions, which in turn reduce the design bending moment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
For example, in the case 3PLofa simply supported beam shown in Fig. 32.1, the bending moment 
below the load is 16 . Now consider a two hinged symmetrical arch of the same span and 
subjected to similar loading as that of simply supported beam. The vertical 

 
 
 
 
 



 
reaction could be calculated by equations of statics. The horizontal reaction is3PLdetermined by the  
method of least work. Now the bending moment below the load is 16 Hy . It is clear that the 
bending moment below the load is reduced in the case of an arch as compared to a simply 
supported beam. It is observed in the last lesson that, the cable takes the shape of the loading 
and this shape is termed as funicular shape. If an arch were constructed in an inverted funicular 
shape then it would be subjected to only compression for those loadings for which its shape is 
inverted funicular.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Since in practice, the actual shape of the arch differs from the inverted funicular 
shape or the loading differs from the one for which the arch is an inverted funicular, 
arches are also subjected to bending moment in addition to compression. As arches 
are subjected to compression, it must be designed to resist buckling. 

 

Until the beginning of the 20
th

 century, arches and vaults were commonly used to span 

between walls, piers or other supports. Now, arches are mainly used in bridge 
construction and doorways. In earlier days arches were constructed using stones and 
bricks. In modern times they are being constructed of reinforced concrete and steel.  
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A structure is classified as an arch not based on its shape but the way it supports 
the lateral load. Arches support load primarily in compression. For example in Fig 
32.3b, no horizontal reaction is developed. Consequently bending moment is not 
reduced. It is important to appreciate the point that the definition of an arch is a 
structural one, not geometrical. 

 

32.2 Type of arches 

 

There are mainly three types of arches that are commonly used in practice: three hinged 

arch, two-hinged arch and fixed-fixed arch. Three-hinged arch is statically determinate 

structure and its reactions / internal forces are evaluated by static equations of 

equilibrium. Two-hinged arch and fixed-fixed arch are statically indeterminate structures. 

The indeterminate reactions are determined by the method of least work or by the 

flexibility matrix method. In this lesson three-hinged arch is discussed.  
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32.3 Analysis of three-hinged arch 

 

In the case of three-hinged arch, we have three hinges: two at the support and 
one at the crown thus making it statically determinate structure. Consider a three 
hinged arch subjected to a concentrated force P as shown in Fig 32.5.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

There are four reaction components in the three-hinged arch. One more equation 
is required in addition to three equations of static equilibrium for evaluating the 
four reaction components. Taking moment about the hinge of all the forces acting 
on either side of the hinge can set up the required equation. Taking moment of all 
the forces about hinge A , yields 

 

 PL P   
 

        

Rby  == 

  

(32.1) 
 

  
 

 4L 4    
 

     3P  
 

∑Fy = 0  

R
ay  

=
 (32.2) 

 

    ⇒ 4  
  

Taking moment of all forces right of hinge C about hinge C leads to 
 

Rby L 
 

Hb  ×h = 

2 

⇒ Rby L PL  
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Hb  = 2h   = 8h (32.3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

jntuworldupdates.org 
37

 Specworld.in 



 

Smartzworld.com Smartworld.asia 
 
 
 
 
 

 

               PL  
 

Applying ∑Fx = 0 to the whole structure gives   Ha  =  
 

               8h  
 

Now moment below the load is given by ,      
 

       Ray L      
 

     M D  = 
4  

− H a b      
 

               
 

     3PL   PLb       
 

   M D  = 
16 

− 8h 
    (32.4) 

 

           
 

 b 1        3PL  PL  
 

              

If =  then  M D  = −  = 0.125PL (32.5) 
 

 h 2    16  16    
 

 

For a simply supported beam of the same span and loading, moment under 
the loading is given by, 

 

3PL 

M D  = = 0.375PL (32.6) 
 16  

 

For the particular case considered here, the arch construction has 
reduced the moment by 66.66 %. 

 

Example 32.1 
 

A three-hinged parabolic arch of uniform cross section has a span of 60 m and a rise 
of 10 m. It is subjected to uniformly distributed load of intensity 10 kN/m as shown in 
Fig. 32.6 Show that the bending moment is zero at any cross section of the arch. 

 

Solution: 
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Reactions:  
Taking moment of all the forces about hinge A , yields 

10 ×60
 

R = R = = 300 kN  
ay by 

  
2  

Taking moment of forces left of hinge C about C , one gets 
 

 30 
 

Ray ×30 − H a ×10 −10 ×30 × 

 
 

 2 = 0 
 

30 
300×30−10×30× 

2 

H =  

a 10 = 450 kN 

From ∑Fx = 0 one could write, Hb = 450 kN . 
 

The shear force at the mid span is zero. 
 

Bending moment 

The bending moment at any section x from the left end 
2 

is, x  

M x = Ray x − H a y −10  2 

The equation of the three-hinged parabolic arch is 

 
 2    10  2   

 

y = 

 

x − 

  

x 

  
 

3 30 
2
    

 

  2    10  2 
 

M x  = 300x − 

    

x − 

  

x 450 −5x 

 

 

3 

  
30

2
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= 300x −300x + 5x
2

  −5x
2

 = 0 
 

 

In other words a three hinged parabolic arch subjected to uniformly distributed 
load is not subjected to bending moment at any cross section. It supports the 
load in pure compression. Can you explain why the moment is zero at all points 
in a three-hinged parabolic arch? 

 

 

Example 32.2 
 

A three-hinged semicircular arch of uniform cross section is loaded as shown in Fig 32.7. 
Calculate the location and magnitude of maximum bending moment in the arch. 

 

Solution:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Reactions:  
Taking moment of all the forces about hinge B leads to, 

 

Ray =  
40

 
×22 

= 29.33 kσ ( ) 
30 

∑Fy = 0 ⇒ Rby  =10.67 kσ ( ) (1) 
 

    

Bending moment 
 

Now making use of the condition that the moment at hinge C of all the 
forces left of hinge C is zero gives, 
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M
 c = Ray  ×15 − H a ×15−40×7=0 (2) 

 29.33 × 15 −40×7  
       

Ha =  =10.66 kN  (  )  
 15     

 

Considering the horizontal equilibrium of the arch gives, 
 

Hb  = 10.66 kN ( ) 
 

The maximum positive bending moment occurs below D and it can be 
calculated by taking moment of all forces left of D about D .  

M D  = Ray  ×8 − H a  ×13.267 (3) 

 

= 29.33 × 8 − 10.66 × 13.267 = 93.213 Kn 

 

Example 32.3 
 

A three-hinged parabolic arch is loaded as shown in Fig 32.8a. Calculate the location and 

magnitude of maximum bending moment in the arch. Draw bending moment diagram. 
 
 

Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Reactions: 
 

Taking A as the origin, the equation of the three-hinged parabolic arch is 
given by, 

 

 8  8  2 

y = 10 x − 400 x (1) 
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Taking moment of all the forces about hinge B leads to, 
 
 

 

R = 40×30+10×20×(20
2

 )= 80 kN ( ) 

ay  40   

  ∑Fy  = 0     ⇒ Rby  =160 kN ( ) (2) 
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Now making use of the condition that, the moment at hinge C of all the 
forces left of hinge C is zero gives,  

M c = Ray ×20 − H a ×8 − 40 ×10 = 0 
 

80×20−40×10 

Ha  = 
   

 

 

  

 

 

 

 

=150 kN () (3) 

 

    

  

 

       
 

8 
 

Considering the horizontal equilibrium of the arch gives, 
 

Hb =150 kN () (4) 

 

Location of maximum bending moment 
 

Consider a section x from end B . Moment at section x in part CB of the arch is 

given by (please note that B has been taken as the origin for this calculation), 
 

8  8 2 10  2 
 

M x  = 160x − 
 

x − 
  

x  150− 
 

x (5) 
 

    
 

10 400  2   
  

According to calculus, the necessary condition for extremum (maximum or 

M 

∂ x = 0 .  
 

 ∂x       
 

∂M 8  
− 

8 ×2   
 

 x  = 160 −    x 150 −10x  

 

10 400 
 

∂x   (6) 
 

= 40 − 4 x = 0 
 

minimum) is that  
x =10 m. 

 

Substituting the value of x in equation (5), the maximum bending 

moment is obtained. Thus, 
 

8 8 
 

M max  = 160(10) −  (10)−  
 

 

  
 

10 400  
 

Mmax  = 200 kN.m. 

 

 
2  

(10) 150− 

 
 

10 2  
(10)  

2 
 

(7) 

 

 

Shear force at D just left of 40 kN load 
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The slope of the arch at D is evaluated by, 

dy 

tanθ = 

 

= 8 − 16 x (8) 

 

 
 

 dx  10  400   
  

Substituting x =10 m. in the above equation, θD  = 21.8
0

 
 

SHEAR FORCE  Sd AT LEFT OF D is 
 

S d = H a sin θ − Ray cosθ (9) 

Sd =150sin(21.80) −80cos(21.80) 

= −18.57 kN. 
 

 

Example 32.4 
 

A three-hinged parabolic arch of constant cross section is subjected to a 
uniformly distributed load over a part of its span and a concentrated load of 50 
kN, as shown in Fig. 32.9. The dimensions of the arch are shown in the figure.  
Evaluate the horizontal thrust and the maximum bending moment in the arch  
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Solution: 
 

Reactions:  

Taking A as the origin, the equation of the parabolic arch may be written as, 
 

y = −0.03 x
2

 +0.6 x 

 

Taking moment of all the loads about B leads to, 
 

1 15  
Ray = 50 ×20 +10 ×15 × − Ha  ×3.75 

25 2  

= 25
1
[2125 −3.75 Ha  ] 

 

Taking moment of all the forces right of hinge C about the hinge C and setting M c = 0 
 

leads to, 

 

 
×15 −6.75H   −10 ×15 × 

15  
 

R = 0 
 

by   b  2   

R 

  

[1125 +6.75 H ] 
 

 

= 1 (3) 
 

by 
 15 

 b   
 

     
 

 

Since there are no horizontal loads acting on the arch, 
 

Ha = Hb = H  (say) 

 

Applying ∑Fy = 0 for the whole arch, 
 

Ray + Rby =10 ×15 +50 = 200 

  1 [2125 −3.75 H  ]+ [1125 +6.75 H ]= 200  
 

 25     15     
 

 85   −0.15 H + 75 + 0.45 H = 200   
 

  H = 40 =133.33 kN  (4)  
 

     
 

0.3        
 

 From equation (2),       
 

    R       
 

     ay = 65.0 kN    
 

    R       
 

     by =135.0 kN  (5)  
 

            
 

 26|PAGE       
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Bending moment 
 

From inspection, the maximum negative bending moment occurs in the region 
AD and the maximum positive bending moment occurs in the region CB . 

 

Span AD  

Bending moment at any cross section in the span AD is  

M = R  x − H (−0.03x
2

  +0.6 x) 0 ≤ x ≤ 5 (6) 
ay a    

 

For, the maximum negative bending moment in this region, ∂∂M
 

= 0 ⇒ Ray  − H a  ( − 0.06 x + 0.6) = 0 

 

x =1.8748 m 
 

M = −14.06 kN.m. 

 

For the maximum positive bending moment in this region occurs at D , 

M D = Ray 5 − H a ( −0.03 × 25 + 0.6 ×5) 
 

=+25.0 kN.m 

 

Span CB  
Bending moment at any cross section, in this span is calculated by, 

 

 

M = Ray x − H a (−0.03x
2

 +0.6x) −50(x −5) −10(x −10) 

(x −10) 
 

 2 
 

For locating the position of maximum bending moment,  
 

 ∂M = 0 =Ray  −H a (−0.06x +0.6) −50 − 

10 

×2(x −10) = 0 

 

 

2 

 

  
 

 ∂x   
 

 x =17.5 m    
  

M = 65×17.5 −133.33(−0.03(17.5)
2

 + 0.6(17.5)) −50(12.5) − 

10
 (7.5)

2
 

2 

M = 56.25 kN.m 

 

Hence, the maximum positive bending moment occurs in span CB. 
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Chapter  

3 

 

Propped Cantilever 

and Fixed Beams 
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1 Introduction 
 

in this chapter we will analyze the beam in which the number of 

reactions exceed the number of independent equations of equilibrium 

 

integration of the differential equation, method of superposition 

compatibility equation (consistence of deformation) 

 

10.2 Types of Statically Indeterminate Beams 
 

the number of reactions in excess of the number of equilibrium equations 
 

is called the degree of static indeterminacy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 
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the excess reactions are called static redundants 
 

the structure that remains when the redundants are released is called 

released structure or the primary structure 

 
 

10.3 Analysis by the Differential Equations of the Deflection Curve 

 

EIv" = M EIv'" = V EIv
iv

 = - q 

 

the procedure is essentially the same as that for a statically determine 

beam and consists of writing the differential equation, integrating to obtain 

its general solution, and then applying boundary and other conditions to 

evaluate the unknown quantities, the unknowns consist of the redundant 

reactions as well as the constants of integration 

 

this method have the computational difficulties that arise when a large 

number of constants to be evaluated, it is practical only for relatively simple 

case 

 
 

Example 10-1  
 

a propped cantilever beam 

AB supports a uniform load q 

 

determine the reactions, shear forces, 

bending moments, slopes, and deflections 

 

choose RB as the redundant, then 

 
 
 

 

2 
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        qL
2

  
 

RA  = qL - RB    M  =CC-RL  
 

       A  B  
 

        2   
 

and the bending moment of the beam is   
 

M = RA x - MA - 

qx
2

    
 

CC    
 

       2    
 

       qL
2

   qx
2

 
 

 = qLx - RBx - CC-RL- CC 
 

        B   
 

       2  

qL
2

 

2 
 

          
 

EIv"  = M  = qLx  -  RBx - CC - RBL - 
 

  

qLx
2

 

 

RBx
2

 qL
2

x 

2 

qx
3

 

 

EIv' = 

 
RBLx - 

 

CC -  CC -  CC - CC + 
 

   2  2  2   6 
 

EIv = 

qLx
3

 Rbx
3

 qL
2

x
2

 RBLx
2

 qx
4

  
 

CC - CC - CC - CCC - CC + C1x + C2  
 

   6  6  4 2 24  
 

boundary conditions        
 

v(0) = 0  v'(0) = 0 v(L) = 0  
 

it is obtained          
 

 C1=C2=0  RB = 3qL/8   
 

and RA = 5qL/8       
 

 M = qL
2

/8      
 

 A          
 

the shear force and bending moment are   
 

       5qL    
 

V = 
R

 A - qx = CC - qx   
 

       8    
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

qx
2

 

CC  

2 
 

C1 

 

 

 

3 
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M   = RA x - MA - 

qx
2

   
 

CC   
 

       2   
 

= 

5qLx 

- 

qL
2

  qx
2

  
 

CC CC -  CC   
 

  8  8   2   
 

the maximum shear force is      
 

Vmax     =   5qL/8 at the fixed end  
 

the maximum positive and negative moments are 
 

Mpos = 9qL
2

/128  Mneg  = -qL
2

/8 
 

slope and deflection of the beam    
 

  qx  

+ 15Lx - 8x
2

) 

 
 

v' = CC (-6L   
 

 48EI        
 

  qx
2

  

- 5Lx + 2x
2

) 

 
 

v = - CC (3L   
 

 48EI        
 

to determine the max, set v' = 0  
 

-6L
2

 + 15Lx - 8x
2

   = 0   
 

we have x1 = 0.5785L      
 

        qL
4

  
 

max = - v(x 1) = 0.005416 CC  
 

        EI  
 

the point of inflection is located at M = 0,   i.e. x = L /4 
 

< 0 and M < 0 for x < L/4 
 

> 0 and M > 0 for x > L/4 
  

 
 
 
 
 

4 
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the slope at B is  

qL
3

 

B = (y ') x=L = CC 

48EI 

 

 

Example 10-2  
 

a fixed-end beam ABC supports a 
 

concentrated load P  at the midpoint 
 

determine the reactions, shear forces, 
 

bending moments, slopes, and deflections 
 

because the load P in vertical direction and symmetric 

 

HA =HB =0 RA =RB =P/2 
 

MA = MB (1 degree of indeterminacy) 
 

Px 

M = C- MA (0 ≦ x ≦ L/2) 2 

 
Px 

EIv" = M=C- MA (0 ≦ x ≦ L/2) 
 

   2    
 

after integration, it is obtained    
 

EIv ' = 

Px
2

 

MA x + 

C
1 (0    ≦ x ≦ L/2) 

 

CC - 
 

  4 

MAx
2

 

   
 

EIv = 

Px
3

  
C1x +C2   (0 ≦ x ≦ L/2) 

 

CC - CC +  
  

12 2 

 

boundary conditions 

 

v(0) = 0 v'(0) = 0 

 

symmetric condition 

 

 

5 
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 v'(0)  = 0  
 

the constants C1, C2and  the 
 

moment MA  are obtained 
 

 C1 = C2 = 0 
 

 
MA = 

 PL 

= MB 
 

 CC 
   

8 

 

the shear force and bending moment 

diagrams can be plotted 
 

thus the slope and deflection equations are 

 

Px  

v' = - CC (L - 2x) (0 ≦ x ≦ L/2) 8EI 
 

Px
2

 

v = - CC (3L - 4x) (0 ≦ x ≦ L/2) 48EI 
 
 

the maximum deflection occurs at the center 
 

PL
3

 

max = - v(L/2) = CCC 192EI 

 

 

the point of inflection occurs at the point where M = 0, i.e. x = L/4, the 

deflection at this point is 

 

PL
3

 

= - v(L/4) = CCC 

384EI 
 

which is equal max/2 
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10.4 Method of Superposition 
 

1. selecting the reaction redundants 
 

2. establish the force-displacement relations 
 

3. consistence of deformation (compatibility equation)  

 

consider a propped cantilever beam 
 

(i) select RB as the redundant, then 
 

  qL
2

 

RA = qL - RB M  =CC-R L 
 A B 

  2  

 

force-displacement relation 

qL
4

 RBL
3

 

( B)1 = CC( B)2 = CC  

 8EI   3EI   
 

compatibility equation    
 

B = (B)1 - (B)1 = 0   
 

qL
4

 R L
3

     
 

CC=CC B     
 

     
 

8EI 3EI    

qL
2

 

 

 

R B 

3qL   5qL 
 

 = CC=>  RA = CC MA =CC 
 

  8   8 8 
 

(ii) select the moment MA as the redundant  
 

RA 

qL MA  qL MA  
 

= C+C RB   = C-C   
 

 2 L  2 L  
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force-displacement relation  
 

   qL
3

 M  L  
 

     A  
 

( A)1  = CC(A)2 = CC  
 

   24EI 3EI   
 

compatibility equation   
 

     qL
3

 M  L 
 

  

= (A)1 - (A)2 

 A 
 

A  =CC-CC=0 
 

     24EI 3EI 
 

thus M = qL
2

/8   
 

  A     
 

and 

R
A = 5qL/8 RB  = 3qL/8  

 

Example 10-3     
 

a continuous beam ABC supports a  
 

uniform load  q     
 

determine the reactions   
 

selectRB as the redundant, then  
 

   

RC =   qL 

qL  
 

RA  = - C  
 

     2  
 

force-displacement relation   
 

   5qL(2L)
4

 5qL
4

  
 (

 B
)
1 = CCCC = CC  

 

   384EI 24EI  
 

   R  (2L)
3

 R  L
3

  
 (

 B
)
2 = 

B B  
 

CCC = CC  
 

   48EI 6EI  
  

 

compatibility equation 
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   5qL
4

 R  L
3

 
 

 

=(B)1  -(B)2 =CC-CC=0 
B 

 

B  
 

   24EI 6EI 
 

thus RB = 5qL/4  
 

and RA = RC  = 3qL/8  
  

 
 

 

Example 10-4       
 

a fixed-end beam AB is loaded by a 
 

force P acting at point D   
 

determine reactions at the ends  
 

also determine D      
 

this is a 2-degree of indeterminacy problem 
 

select 
M

A and MB as the redundants 
 

RA = 

Pb 

+ 

M
A 

- 

M
B 

 

C C  C 
 

  L  L   L 
 

RB = 

Pa 

- 

MA  MB 
 

C C + C 
 

  L  L   L 
 

force-displacement relations   
 

( A)1 

Pab(L + b)   
 

= CCCCC   ( B)1 
 

   6LEI    
 

  MAL   MAL 
 

(A)2 = CC(B)2   = CC 
 

  3EI    6EI 
 

  MBL    MBL 
 

(A)3 = CC(B)3   = CC 
 

  6EI    3EI 
 

 

compatibility equations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pab(L + a) 

= CCCCC  
6LEI 
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A = (A)1 - (A)2  - (A)3 = 0  
 

B = (B)1 - (B)2  - (B)3 = 0  
 

i.e.   MAL 
+ 

MBL 

= 
Pab(L + b)   

 

CC  CC   CCCCC   
 

3EI   6EI    6LEI    
 

MAL 
+ 

MBL 
= 

Pab(L + a)   
 

CC  CC   CCCCC   
 

6EI   3EI    6LEI    
 

solving these equations, we obtain    
 

MA = 

Pab
2

  

MB  = 

Pa
2

b   
 

CC  CC   
 

   L
2

     L2   
 

and the reactions are        
 

  Pb
2

      Pa
2

  
 

RA    =   CC (L + 2a)    RB  =  CC (L + 2b) 
 

   L3      L3  
 

the deflection D can be expressed as   
 

D = (D)1 - (D)2  - (D)3   
 

(D)1 = 

Pa
2

b
2

       
 

CCC       
 

   3LEI     

Pa
2

b
3

 

 
 

(
D
)

2 = 

MAab  
+ b) = +  b) 

 

CCC (L  CCC (L 
 

   6LEI     6L
3

EI  
 

(D)3 = 

MBab  
+ a) = 

Pa
3

b
2

 

+  a) 
 

CCC (L  CCC (L 
 

   6LEI     6L
3

EI  
 

thus 

 

= 

Pa
3

b
3

       
 

D CCC       
 

   3L
3

EI       
 

if a = b =L/2     
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then MA =MB= 

PL 

RA =RB = 

P 
 

CC C 
 

  

PL
3

 

8  2 
 

     
 

and C = CCC    
 

  192EI    
 

 
 

 

Example 10-5  
 

a fixed-end beam AB supports a uniform 

 

load q acting over part of the span   
 

determine the reactions of the beam  
 

to obtain the moments caused by qdx, 
 

replace  P to qdx, a to x, and  b 
 

to L - x  

qx(L - x)
2

dx 

  
 

dMA = 

  
 

CCCCC   
 

   L
2

    
 

dMB = 

qx
2

(L - x)dx   
 

CCCCC   
 

   L
2

    
 

integrating over the loaded part  
 

    q a qa
2

 
 

MA     = ∫dMA = C∫ x(L - x) dx = CC (6L  - 8aL + 3a ) 
 

    L
2

 0 12L
2

 
 

    q a qa 
 

MB = ∫dMB = C∫ x (L - x)dx = CC (4L  - 3a) 
 

    L
2

 0 12L
2

 
   

Similarly 
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q(L - x)
2

(L + 2x)dx 

dRA = CCCCCCCC 

L3 

qx
2

(3L - 2x)dx 

dR B = CCCCCC 

 

L3  

integrating over the loaded part    
 

q a  qa 

(2L
3

 - 2a
2

L + a
3

) 
 

RA =∫dRA = C ∫ (L - x) (L + 2x)dx = CC  
 

L
3

 0  2L
3

 
qa

3
 

 

 q a   2  
 

  

CC (2L - a) 
 

R
B    = ∫dRB=  C∫ x (3L - 2x)dx =  

 

 L
3

 0  2L
3

 
 

for the uniform acting over the entire length, i.e. a = L 
  

qL
2

 
 

MA =MB = CC 
 

12 
 

qL 

RA =RB =C  

2 

 

the center point deflections due to uniform load and the end moments are  

5qL
4

  M  L (qL
2

/12)L
2

 qL
4

 
 

(C)1=CCC (C)2= 

A   
 

CC = CCCC = CC 
 

384EI  8EI 8EI 96EI 
 

  qL
4

   
 

C = (C)1 - (C)2 = CCC 384EI  
 
 

 

Example 10-6 
 

a beam ABC rests on  supports A 
 

and B and is supported by a cable at C 
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find the force T of the cable 

 

take the cable force T as redundant the 

deflection ( C)1 due the uniform 
 

load can be found from example 9.9 with a 

= L 

qL
4

 

(C)1 = CCC 

4EbIb 
 

the deflection  ( C)2 due to a force 
 

acting on  C is obtained 
 

use conjugate beam method 

TL
2

 

(C)2 = M = CCCL + 

3EbIb 

2TL  
= CCC 

3EbIb 
 

the elongation of the cable is 

 

Th 

(C)3 = CC 

EcAc 

 

compatibility equation 

 
 
 

 

T 

 
 
 
 

 

TL L2L 

CC C C 

EbIb  2 3 

 

( C)1 - (C)2 = (C)3 

qL
4

 2TL
3

  Th 

CC - CC =  CC 

4EbIb 3EbIb  EcAc 

 3qL
4
E A 

T = CCCCCCCC c  c 

8L
3

EcAc + 12hEbI 
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Chapter  

4 

Slope Deflection and  

Moment Distribution 

Method 
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Slope – Deflection Method 

 
 

 

As pointed out earlier, there are two distinct methods of analysis for statically 
indeterminate structures depending on how equations of equilibrium, load 
displacement and compatibility conditions are satisfied: 1) force method of 
analysis and (2) displacement method of analysis. In the last module, force 
method of analysis was discussed. In this module, the displacement method of 
analysis will be discussed. In the force method of analysis, primary unknowns are 
forces and compatibility of displacements is written in terms of pre -selected 
redundant reactions and flexibility coefficients using force displacement relations. 
Solving these equations, the unknown redundant reactions are evaluated. The 
remaining reactions are obtained from equations of equilibrium. 

 

As the name itself suggests, in the displacement method of analysis, the primary 
unknowns are displacements. Once the structural model is defined for the 
problem, the unknowns are automatically chosen unlike the force method. Hence 
this method is more suitable for computer implementation. In the displacement 
method of analysis, first equilibrium equations are satisfied. The equilibrium of 
forces is written by expressing the unknown joint displacements in terms of load 
by using load displacement relations. These equilibrium equations are solved for 
unknown joint displacements. In the next step, the unknown reactions are 
computed from compatibility equations using force displacement relations. In 
displacement method, three methods which are closely related to each other will 
be discussed. 

 

1) Slope-Deflection Method  
2) Moment Distribution Method 
3) Direct Stiffness Method 

 

In this module first two methods are discussed and direct stiffness method is 
treated in the next module. All displacement methods follow the above general 
procedure. The Slope-deflection and moment distribution methods were 
extensively used for many years before the compute era. After the revolution 
occurred in the field of computing only direct stiffness method is preferred. 

 

Degrees of freedom 

 

In the displacement method of analysis, primary unknowns are joint 
displacements which are commonly referred to as the degrees of freedom of the 
structure. It is necessary to consider all the independent degrees of freedom 
while writing the equilibrium equations.These degrees of freedom are specified at 
supports, joints and at the free ends. For example, a propped cantilever beam 
(see Fig.14.01a) under the action of load P will undergo only rotation at B if axial 
deformation is neglected. In this case kinematic degree of freedom of the beam is 

only one i.e. θB as shown in the figure. 
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In Fig.14.01b, we have nodes at A,B,C and D. Under the action of lateral loads 

and P3 , this continuous beam deform as shown in the figure. Here axial 
 

deformations are neglected. For this beam we have five degrees of freedom θA , 

θB ,θC , θD and D as indicated in the figure. In Fig.14.02a, a symmetrical plane 
 

frame is loaded symmetrically. In this case we have only two degrees of 

freedomθB andθC . Now consider a frame as shown in Fig.14.02b. It has three 

degrees of freedom viz. θB ,θC and D as shown. Under the action of horizontal 
 

and vertical load, the frame will be displaced as shown in the figure. It is 
observed that nodes at B and C undergo rotation and also get displaced 
horizontally by an equal amount. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence in plane structures, each node can have at the most one linear 
displacement and one rotation. In this module first slope-deflection equations as 
applied to beams and rigid frames will be discussed. 
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Instructional Objectives 

 

After reading this chapter the student will be able to  

1. Calculate kinematic degrees of freedom of continuous beam.  
2. Derive slope-deflection equations for the case beam with unyielding supports. 
3. Differentiate between force method and displacement method of analyses.  
4. State advantages of displacement method of analysis as compared to force 
method of analysis.  
5. Analyse continuous beam using slope-deflection method. 

 

 

14.1 Introduction 

 

In this lesson the slope-deflection equations are derived for the case of a beam 
with unyielding supports .In this method, the unknown slopes and deflections at 
nodes are related to the applied loading on the structure. As introduced earlier, 
the slope-deflection method can be used to analyze statically determinate and 
indeterminate beams and frames. In this method it is assumed that all 
deformations are due to bending only. In other words deformations due to axial 
forces are neglected. As discussed earlier in the force method of analysis 
compatibility equations are written in terms of unknown reactions. It must be 
noted that all the unknown reactions appear in each of the compatibility 
equations making it difficult to solve resulting equations. The slope-deflection 
equations are not that lengthy in comparison. 

 
The slope-deflection method was originally developed b y Heinrich Manderla and 
Otto Mohr for computing secondary stresses in trusses. The method as used  
today was presented by G.A.Maney in 1915 for analyzing rigid jointed structures. 

 

 

14.2 Slope-Deflection Equations 

 

Consider a typical span of a continuous beam AB as shown in Fig.14.1.The beam 
has constant flexural rigidity EI and is subjected to uniformly distributed loading 
and concentrated loads as shown in the figure. The beam is kinematically 
indeterminate to second degree. In this lesson, the slope-deflection equations are 
derived for the simplest case i.e. for the case of continuous beams with 
unyielding supports. In the next lesson, the support settlements are included in 
the slope-deflection equations.  
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For this problem, it is required to derive relation between the joint end moments 

M AB and M BA in terms of joint rotations θA and θB and loads acting on the 
 

beam .Two subscripts are used to denote end moments. For example, end 
moments MAB denote moment acting at joint A of the member AB. Rotations of the 

tangent to the elastic curve are denoted by one subscript. Thus, θA denotes 
 

the rotation of the tangent to the elastic curve at A. The following sign 
conventions are used in the slope-deflection equations (1) Moments acting at the 
ends of the member in counterclockwise direction are taken to be positive. (2) 
The rotation of the tangent to the elastic curve is taken to be positive when the 
tangent to the elastic curve has rotated in the counterclockwise direction from its 
original direction. The slope-deflection equations are derived by superimposing  

the end moments developed due to (1) applied loads (2) rotation θA (3) 

rotationθB . This is shown in Fig.14.2 (a)-(c). In Fig. 14.2(b) a kinematically  
determinate structure is obtained. This condition is obtained by modifying the support 
conditions to fixed so that the unknown joint rotations become zero. The structure shown in 
Fig.14.2 (b) is known as kinematically determinate structure or restrained structure. 

For this case, the end moments are denoted by M AB
F

 and M BA
F

 . 

The fixed end moments are evaluated by force–method of analysis as discussed 
in the previous module. For example for fixed- fixed beam subjected to uniformly 
distributed load, the fixed-end moments are shown in Fig.14.3. 
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The fixed end moments are required for various load cases. For ease of calculations, 
fixed end forces for various load cases are given at the end of this lesson. In the  

actual structure end A rotates by θA and end B rotates by θB . Now it is required to derive 

a relation relating θA and θB with the end moments M ′AB and 

M ′BA . Towards this end, now consider a simply supported beam acted by moment 

M AB′ at A as shown in Fig. 14.4. The end moment M AB′ deflects the 
 

beam as shown in the figure. The rotations θA′and θB′are calculated from 
moment-area theorem. 

 

′ 
   MABL   

θA′= 3EI (14.1a) 
   ′  
   MABL  

θB′=−  6EI (14.1b)  

Now a similar relation may be derived if only M BA′is acting at end B (see Fig. 
 

14.4). 
′ 

θB′′ = 
 MBAL  

 

3EI and (14.2a) 
 

θA′′ = −  ′ 
(14.2b)  

 MBAL  
  

6EI 

 

Now combining these two relations, we could relate end moments acting at A 
and B to rotations produced at A and B as (see Fig. 14.2c) 

 

 M '  L  M '   L  
 

θA = 

AB 

− 

BA  
 

3EI 6EI (14.3a) 
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 ′  ′ (14.3b)  

θB = M  L − M  L 
 

BA B A  
 

 3EI  6EI  
 

 

′ ′ 

Solving for M A B  and BA  in terms of θA and θB , 

M′AB = 

2EI 
(2θA + θB ) (14.4) 

 

L 
 

′ 2EI   
 

M   

(14.5) 

 

BA = L (2θB +θA ) 
 

Now writing the equilibrium equation for joint moment at A (see Fig. 14.2). 
 

MAB=MAB
F

 +M′AB (14.6a) 
 

Similarly writing equilibrium equation for joint  B  
 

 

F ′ 
 

 BA BA  BA (14.6b) 
 

Substituting the value of 
′  

equation (14.4) in equation (14.6a) one 
 

M AB from  
 

obtains,       
 

 

MAB=MAB
F

 

 2EI  
 

 

+ 

 

(2θA +θB ) (14.7a) 

 

 L 
  

′ 
Similarly substituting M B A from equation (14.6b) in equation (14.6b) one obtains, 

MBA=MBA
F

 

2EI  
 

+  L  (2θB +θA ) (14.7b) 
   

Sometimes one end is referred to as near end and the other end as the far end. In 
that case, the above equation may be stated as the internal moment at the near 
end of the span is equal to the fixed end moment at the near end due to 

2 EI 
external loads plus L times the sum of twice the slope at the near end and the 

 

slope at the far end. The above two equations (14.7a) and (14.7b) simply 
referred to as slope–deflection equations. The slope-deflection equation is 
nothing but a load displacement relationship. 
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14.3 Application of Slope-Deflection Equations to 
Statically Indeterminate Beams. 

 

The procedure is the same whether it is applied to beams or frames. It 
may be summarized as follows: 

 
1. Identify all kinematic degrees of freedom for the given problem. This can 

be done by drawing the deflection shape of the structure. All degrees of 
freedom are treated as unknowns in slope-deflection method.  

2. Determine the fixed end moments at each end of the span to applied load. 
The table given at the end of this lesson may be used for this purpose.  

3. Express all internal end moments in terms of fixed end moments and near 
end, and far end joint rotations by slope-deflection equations.  

4. Write down one equilibrium equation for each unknown joint rotation. For 
example, at a support in a continuous beam, the sum of all moments 
corresponding to an unknown joint rotation at that support must be zero.  
Write down as many equilibrium equations as there are unknown joint 
rotations.  

5. Solve the above set of equilibrium equations for joint rotations.  
6. Now substituting these joint rotations in the slope-deflection equations 

evaluate the end moments. 
7. Determine all rotations. 

 

Example 14.1 
 

A continuous beam ABC is carrying uniformly distributed load of 2 kN/m in 
addition to a concentrated load of 20 kN as shown in Fig.14.5a. Draw bending 
moment and shear force diagrams. Assume EI to be constant.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a). Degrees of freedom 
 

It is observed that the continuous beam is kinematically indeterminate to first 
degree as only one joint rotation θB is unknown. The deflected shape /elastic 
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curve of the beam is drawn in Fig.14.5b in order to identify degrees of freedom. 
By fixing the support or restraining the support B against rotation, the fixed-fixed 
beams area obtained as shown in Fig.14.5c.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

F F ,M
BC 

F 

and M CB 

F 

are calculated referring to the 

 

(b). Fixed end moments M AB 
,M

BA   
 

Fig. 14. and following the sign conventions that counterclockwise moments 
are positive. 

M 
F

 = 2 × 6 
2

 + 20 × 3 × 3
2

 = 21 kN . m 

AB 12 6  
M

 B A 
F

 = −21 kN.m  

MBC
F

= 4  ×4
2
  =5.33 kN.m  

 12   

MCB

F
 = −5.33 kN.m (1) 

 

(c) Slope-deflection equations 

Since ends A and C are fixed, the rotation at the fixed supports is zero, θA =θC = 
0 . Only one non-zero rotation is to be evaluated for this problem. Now, 
write slope-deflection equations for span AB and BC. 

F  2EI 

l (2θA +θB ) 

 

  
 

M
AB

=M
AB +  
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2EI 

MAB=21+ θB 

6 
 

MBA=−21+2EI(2θB+θA) 
 

l 
 

MBA=−21+ 4EIθB 

6  

M BC = 5.33 + EIθB 
 

MCB = −5.33 + 0.5EIθB 

 

(d) Equilibrium equations 

 
 

Smartworld.asia 
 
 
 
 
 

 

(2) 
 
 
 
 
 
 

 

(3) 
 

 

(4) 

 

(5) 

 

In the above four equations (2-5), the member end moments are expressed in terms 

of unknown rotation θB . Now, the required equation to solve for the rotation  

θB is the moment equilibrium equation at support B. The free body diagram 
of support B along with the support moments acting on it is shown in Fig. 
14.5d. For, moment equilibrium at support B , one must have,  

 
 
 
 
 
 
 
 
 
 
 
 

 

∑M B  = 0 MBA+MBC=0 (6) 

 

Substituting the values of M B A  and M B C  in the above equilibrium equation, 
4EI 

− 21 +θB +5.33 + EIθB = 0  
6 

⇒1. 667θB EI =15.667 

 

θB  = 
9.398 ≅ 

9.40 
(7)    

 

EI EI 
 

(e) End moments 
 

After evaluatingθB , substitute it in equations (2-5) to evaluate beam end 
moments. Thus, 
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M 

AB
 =21+ 

EI
 θB 

 
3 

M EI   9.398 
AB  = 21 + × = 24.133kN.m 

 

3 EI 
 

M  EI       
 

            

BA=−21+3 (2θB)    
 

M  EI  2×9.4    
 

BA 

   × 

EI  

   
 

=−21+3 = −14.733kN.m  
 

M 9. 4        
 

B  C             
 

M 

= 5.333 +  EI EI =14.733kN.m  
 

9. 4    EI  
 

C B = − 5.333 + 
 

 

× 
   

= −0.63 kN.m (8) 
 

    
 

   EI 2    
 

 

(f) Reactions 
 

Now, reactions at supports are evaluated using equilibrium equations 
(vide Fig. 14.5e)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

RA ×6 +14.733 −20 ×3 −2 ×6 ×3 −24.133 = 0 

RA = 17.567 kN(↑) 

RBL = 16 − 1.567 = 14.433 kN(↑) 
 

R=8  + 
 

 

 

= 11.526 kN(↑ ) 
 

 

   
 

BR 4 
    

 

     
 

RC = 8 + 3.526 = 4.47 kN(↑) (9) 
 

 

The shear force and bending moment diagrams are shown in Fig. 14.5f. 
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Example 14.2 
 

Draw shear force and bending moment diagram for the continuous beam ABCD 
loaded as shown in Fig.14.6a.The relative stiffness of each span of the beam is 
also shown in the figure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For the cantilever beam portion CD, no slope-deflection equation need to be 
written as there is no internal moment at end D. First, fixing the supports at B and 
C, calculate the fixed end moments for span AB and BC. Thus, 

F 3 
×82

  =16 kN.m  
AB = 

12 
 

M BA
F

 = −16 kN. m 

 

M 
F

 = 10× 3 ×3
2

 = 7.5 kN.m 
 

BC 6
2

  

MC B 
F

 = −7.5 kN.m (1) 
 

In the next step write slope-deflection equation. There are two equations for 
each span of the continuous beam. 
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2EI 

MAB=16+ 
 

(θB ) =16 + 0.25θB EI 
 

8 
 

  
 

M BA = −16 + 0.5θB EI 

2 ×2EI  

MBC=7.5+ 

 

(2θB + θC ) = 7.5 +1. 334E IθB + 0. 667EI θC 

 
 

6  
 

MCB = −7.5 +1.334EIθC +0.667EIθB (2) 
 

Equilibrium equations 
 

The free body diagram of members AB , BC and joints B and C are shown in 

Fig.14.6b.One could write one equilibrium equation for each joint B and C.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Support B,        
 

∑MB = 0     MBA+MBC=0 (3) 
 

∑MC = 0     MCB+MCD=0 (4) 
 

We know that MCD =15 kN.m     (5) 
 

  ⇒ MCB = −15 kN.m (6) 
 

Substituting  the  values of    MCBand MCD in  the above  equations 
 

for M AB , M B A , M BC and M CB we get,   
 

  θ  = 24.5  
=8.164 

 
 

  

B 
    

 

  3.001 
  

 

      
 

  θC  = 9.704  (7) 
 

Substituting θB   ,θC  in the slope-deflection equations, we get  
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M     8.164    
 

AB
 =16+0.25EIθB=16+0.25EI×  EI =18.04 kN.m  

 

M     8.164     
 

BA=−16+0.5EIθB=−16+0.5EI×  EI = −11.918 kN.m  
 

BC  = 7.5 + 1.334EI × 
  

+0.667EI( 
   

) =11.918 kN.m 
 

 

      
 

M 
EI   EI  

 

8. 164       
9.704 

  
 

CB = −7.5 + 0.667 EI × 
  

+ 1.334E I(− ) = −15 kN.m (8) 

 

  
 

   
 

   EI     EI  
 

 

Reactions are obtained from equilibrium equations (ref. Fig. 14.6c)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

RA ×8 −18.041−3×8 ×4 +11.918 = 0 
 

RA =12.765 kN 
 

RBR = 5 − 0.514kN = 4.486 kN 
 

RBL =11.235 kN 
 

RC = 5 + 0.514kN =5.514 kN 

 

The shear force and bending moment diagrams are shown in Fig. 14.6d. 
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For ease of calculations, fixed end forces for various load cases are given in Fig. 
14.7. 

 
 
 
 
 

 

jntuworldupdates.org Specworld.in 
82 



 

Smartzworld.com Smartworld.asia  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

jntuworldupdates.org Specworld.in 
83 



 

Smartzworld.com Smartworld.asia 
 
 
 

 

Summary 

 

In this lesson the slope-deflection equations are derived for beams with 
unyielding supports. The kinematically indeterminate beams are analysed by 
slope-deflection equations. The advantages of displacement method of analysis 
over force method of analysis are clearly brought out here. A couple of examples 
are solved to illustrate the slope-deflection equations. 
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Analysis of Statically 
Indeterminate 

Structures by the 
Displacement Method 
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Lesson 

 

18 

 

The Moment- 

Distribution Method: 
 

Introduction 
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Instructional Objectives 

 

After reading this chapter the student will be able to 
 

1. Calculate stiffness factors and distribution factors for various members in 
a continuous beam.  

2. Define unbalanced moment at a rigid joint.  
3. Compute distribution moment and carry-over moment. 
4. Derive expressions for distribution moment, carry-over moments. 
5. Analyse continuous beam by the moment-distribution method. 

 

 

18.1 Introduction 

 

In the previous lesson we discussed the slope-deflection method. In slope-
deflection analysis, the unknown displacements (rotations and translations) are 
related to the applied loading on the structure. The slope -deflection method 
results in a set of simultaneous equations of unknown displacements. The 
number of simultaneous equations will be equal to the number of unknowns to be 
evaluated. Thus one needs to solve these simultaneous equations to obtain 
displacements and beam end moments. Today, simultaneous equations could be 
solved very easily using a computer. Before the advent of electronic computing, 
this really posed a problem as the number of equations in the case of multistory 
building is quite large. The moment-distribution method proposed by Hardy Cross 
in 1932, actually solves these equations by the method of successive 
approximations. In this method, the results may be obtained to any desired 
degree of accuracy. Until recently, the moment-distribution method was very 
popular among engineers. It is very simple and is being used even today for 
preliminary analysis of small structures. It is still being taught in the classroom for 
the simplicity and physical insight it gives to the analyst even though stiffness 
method is being used more and more. Had the computers not emerged on the 
scene, the moment-distribution method could have turned out to be a very 
popular method. In this lesson, first moment-distribution method is developed for 
continuous beams with unyielding supports. 

 

 

18.2 Basic Concepts 

 

In moment-distribution method, counterclockwise beam end moments are taken 
as positive. The counterclockwise beam end moments produce clockwise 
moments on the joint Consider a continuous beam ABCD as shown in Fig.18.1a.  

In this beam, ends A and D are fixed and hence,θ A =θD = 0 .Thus, the 

deformation of this beam is completely defined by rotations θB and θ C at joints B 

and C respectively. The required equation to evaluate θB and θC is obtained by 
considering equilibrium of joints B and C. Hence, 
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∑M  B = 0 ⇒MBA+MBC=0 (18.1a) 

∑M  C = 0 ⇒MCB+MCD=0 (18.1b) 
 

According to slope-deflection equation, the beam end moments are written as 

 

F 2 EIAB 

MBA=MBA + L (2θB)  
AB 

4EI AB 
is known as stiffness factor for the beam AB and it is denoted 

 

A B 
 

F 
 

 
  

by k AB . M BA is the fixed end moment at joint B of beam AB when joint B is fixed. 
Thus, 

 

M BA=MBA
F

+KABθB 
 

M 
F 

K 
   θ

 C  

M    
 

BC BC 
 

BC θ  B  + 
     

 

 
2 

  
 

       
 

 F + K θ  
θ

 B 
 

M = M CB C 
 

+ 
    

 

     
 

C B C B    2   

      
 

M 
F+K θ      

 

M  CD C 
(18.2) 

 

CD CD    
 

In Fig.18.1b, the counterclockwise beam-end moments M BA and M BC produce a 

clockwise moment M B on the joint as shown in Fig.18.1b. To start with, in 
moment-distribution method, it is assumed that joints are locked i.e. joints are 
prevented from rotating. In such a case (vide Fig.18.1b), 

θB =θC = 0 , and hence 
 

F 
M BA

=M
BA

 

F 
M BC

=M
BC

 

F 
M M 

CB CB 
F 

M = M 
CD CD

 (18.3) Since joints B and C are artificially held 
locked, the resultant moment at joints B 

and C will not be equal to zero. This moment is denoted by M B and is known as the 
unbalanced moment. 
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Thus, 

M B=MBA
F

+MBC
F

 
 

In reality joints are not locked. Joints B and C do rotate under external loads. 
When the joint B is unlocked, it will rotate under the action of unbalanced  

moment M B . Let the joint B rotate by an angleθB 1 , under the action of M B . 
This will deform the structure as shown in Fig.18.1d and introduces distributed 

d d 

moment BA , BC in the span BA and BC respectively as shown in the figure.  

The unknown distributed moments are assumed to be positive and hence act in 
counterclockwise direction. The unbalanced moment is the algebraic sum of the 
fixed end moments and act on the joint in the clockwise direction. The 
unbalanced moment restores the equilibrium of the joint B. Thus, 

 

∑M B = 0,   M  BA
d
 + M BC

d
 + M B = 0 (18.4) 

The distributed moments are related to the rotation θB1  by the slope-deflection 

equation.  
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M 

d
 = K θ  

 

 BA  BA  B1  
 

 d 
=

 
K

 BC
θ

B1 

 
 

M
 BC (18.5) 

 

Substituting equation (18.5) in (18.4), yields 

θ B1(KBA+KBC)=−MB 

θ  = − M B 
 

 B 1 KBA  +KBC 
 

   

   
  

 

In general, 

θ 
M

 B  
B1

=− ∑ (18.6) 
where summation is taken over all the members meeting at that particular joint.  

Substituting the value of θB1 in equation (18.5), distributed moments are 
calculated. Thus, 

K  

Md
 

 B A  
 

B A = 

 K
 M B 

 
 

− ∑  
 

  K  
 

  BC  
 

M B C
d

 = − ∑K M B (18.7) 
  

The ratio ∑ KBA K  is known as the distribution factor and is represented by DFBA . 
 

Thus, 
 

M BA
d

 = −DFBA. M B  

M BC
d

 = −DFBC. M B (18.8) 
The distribution moments developed in a member meeting at B, when the joint B 

is unlocked and allowed to rotate under the action of unbalanced moment M B is 
equal to a distribution factor times the unbalanced moment with its sign reversed. 

 

As the joint B rotates under the action of the unbalanced moment, beam end 
moments are developed at ends of members meeting at that joint and are known 
as distributed moments. As the joint B rotates, it bends the beam and beam end 
moments at the far ends (i.e. at A and C) are developed. They are known as 
carry over moments. Now consider the beam BC of continuous beam ABCD. 
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When the joint B is unlocked, joint C is locked .The joint B rotates by θB1 under 
 

the action of unbalanced moment M B (vide Fig. 18.1e). Now from slope-
deflection equations 

 

M d  = K θ 
BC BCB 

M 1 K  θ  
= 2 BCB 

M 1  

CB
 =2 MBC 

d 
 

(18.9) 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The carry over moment is one half of the distributed moment and has the same 
sign. With the above discussion, we are in a position to apply moment-
distribution method to statically indeterminate beam. Few problems are solved 
here to illustrate the procedure. Carefully go through the first problem, wherein 
the moment-distribution method is explained in detail. 

 

Example 18.1 

 

A continuous prismatic beam ABC (see Fig.18.2a) of constant moment of inertia 
is carrying a uniformly distributed load of 2 kN/m in addition to a concentrated 
load of 10 kN. Draw bending moment diagram. Assume that supports are 
unyielding. 
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Solution 
 

Assuming that supports B and C are locked, calculate fixed end moments 
developed in the beam due to externally applied load. Note that counterclockwise 
moments are taken as positive. 

MAB
F= 

  wL2    2 ×9  
=1.5 kN.m 

 
 

     AB =     
 

   12   12        
 

F     wL
2
 A B     2 ×9     

 

M 
                  

 

                  
 

BA=− 12  = −  12= −1.5 kN .m  
 

F   Pab
2

 10×2×4    
 

        

M 
= 

  
L2 = 

  
16 

  
= 5 kN.m 

 
 

BC        
 

     BC            
 

F     Pa 
2

 b      10× 2 ×4   
 

           

M 
= − 

   2  

= − 16 = −5 kN.m 
 

 

CB   L  (1) 
 

BC 

 

Before we start analyzing the beam by moment-distribution method, it is 
required to calculate stiffness and distribution factors. 

 

KBA= 
4EI 

 

3  
 

  

K BC=
4EI

 

4 
 

At B: ∑K = 2.333EI 
 

1.333EI 

DF = 

BA 2.333EI = 0.571  

DF =  
EI

 
 

BC 2.333EI = 0.429 
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At C: ∑K = EI 

DFCB =1.0 

 

Note that distribution factor is dimensionless. The sum of distribution factor at a 
joint, except when it is fixed is always equal to one. The distribution moments are 
developed only when the joints rotate under the action of unbalanced moment. In 
the case of fixed joint, it does not rotate and hence no distribution moments are 
developed and consequently distribution factor is equal to zero. 

 

In Fig.18.2b the fixed end moments and distribution factors are shown on a 
working diagram. In this diagram B and C are assumed to be locked.  

 
 
 
 
 
 
 
 
 
 

 

Now unlock the joint C. Note that joint C starts rotating under the unbalanced 
moment of 5 kN.m (counterclockwise) till a moment of -5 kN.m is developed 
(clockwise) at the joint. This in turn develops a beam end moment of +5 kN.m 

(M CB ). This is the distributed moment and thus restores equilibr ium. Now joint C 
 

is relocked and a line is drawn below +5 kN.m to indicate equilibrium. When joint 
C rotates, a carry over moment of +2.5 kN.m is developed at the B end of 
member BC.These are shown in Fig.18.2c.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

When joint B is unlocked, it will rotate under an unbalanced moment equal to 
algebraic sum of the fixed end moments(+5.0 and -1.5 kN.m) and a carry over 
moment of +2.5 kN.m till distributed moments are developed to restore 
equilibrium. The unbalanced moment is 6 kN.m. Now the distributed moments M  

BC and M BA are obtained by multiplying the unbalanced moment with 
the corresponding distribution factors and reversing the sign. Thus, 
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M BC = −2.574 kN.m and M BA = −3.426  kN.m. These distributed moments restore 
 

the equilibrium of joint B. Lock the joint B. This is shown in Fig.18.2d along with 
the carry over moments.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now, it is seen that joint B is balanced. However joint C is not balanced due to 
the carry over moment -1.287 kN.m that is developed when the joint B is allowed 
to rotate. The whole procedure of locking and unlocking the joints C and B 
successively has to be continued till both joints B and C are balanced 
simultaneously. The complete procedure is shown in Fig.18.2e.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The iteration procedure is terminated when the change in beam end moments is 
less than say 1%. In the above problem the convergence may be improved if we 
leave the hinged end C unlocked after the first cycle. This will be discussed in the 
next section. In such a case the stiffness of beam BC gets modified. The above 
calculations can also be done conveniently in a tabular form as shown in Table 
18.1. However the above working method is preferred in this course. 
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Table 18.1 Moment-distribution for continuous beam ABC 

 

Joint  A B  C 

Member  AB BA BC CB 

Stiffness  1.333EI 1.333EI EI EI 

Distribution  0.571 0.429 1.0 

factor      

FEM in +1.5 -1.5 +5.0 -5.0 

kN.m      

Balance    +2.5 +5.0 

joints C ,B -1.713 -3.426 -2.579 0 

and C.O.      

   -4.926 +4.926 -1.287 

Balance C   +0.644 1.287 

and C.O.      

Balance B  -0.368 -0.276 -0.138 

and C.O.      

Balance C  -0.184 -5.294 +5.294 0.138 

C.O.    +0.069 0 

Balance B -0.02 -0.039 -0.030 -0.015 

and C.O.      

Balance C     +0.015 

Balanced  -0.417 -5.333 +5.333 0 

moments in     

kN.m      

 

Modified stiffness factor when the far end is hinged 
 

As mentioned in the previous example, alternate unlocking and locking at the 
hinged joint slows down the convergence of moment -distribution method. At the 
hinged end the moment is zero and hence we could allow the hinged joint C in 
the previous example to rotate freely after unlocking it first time. This 
necessitates certain changes in the stiffness parameters. Now consider beam 
ABC as shown in Fig.18.2a. Now if joint C is left unlocked then the stiffness of  

member BC changes. When joint B is unlocked, it will rotate by θB1 under the action of 

unbalanced moment M B .The support C will also rotate by θC1 as it is 

free to rotate. However, moment M CB = 0 . Thus  
 

     K    
 

M
CB

=K
BC

θ
C

+
 

BC  

θB (18.7) 

 

2  
 

But, M CB = 0     
 

⇒θC=− 

θB    

(18.8) 
 

 2     
 

Now, 
K 

   K    
 

M    
BC θC (18.9) 

 

B C BC 
 

B 
 

  
 

     2    
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Substituting the value of θC in eqn. (18.9), 
 

  BC  3 K  θ    
 

     

BC B 
(18.10) 

  
 

BCBCB 4   B 4 
  

 

   
 

R 

θB 

       
 M

BC
=K

BC     (18.11)   
 

R       3 K 
 

The K BC  is known as the 
 

reduced 
 

stiffness factor and is equal to 4 
BC 

 

   
 

.Accordingly distribution factors also get modified. It must be noted that there is 
no carry over to joint C as it was left unlocked. 

 

Example 18.2 
 

Solve the previous example by making the necessary modification for hinged end 

C.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fixed end moments are the same. Now calculate stiffness and distribution 
factors. 

 

K BA =1.333EI, K BC = 
3

4 EI = 0.75EI 
 

Joint B: ∑K = 2.083, D F =0.64,D F = 0.36 
 

Joint C: ∑K = 0.75EI,  B A  BC  
 

 
D

C B =1.0   
 

  F    
 

 

All the calculations are shown in Fig.18.3a 

 

Please note that the same results as obtained in the previous example are 
obtained here in only one cycle. All joints are in equilibrium when they are 
unlocked. Hence we could stop moment-distribution iteration, as there is no 
unbalanced moment anywhere. 
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Example 18.3 
 

Draw the bending moment diagram for the continuous beam ABCD loaded as 
shown in Fig.18.4a.The relative moment of inertia of each span of the beam is 
also shown in the figure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution 
 

Note that joint C is hinged and hence stiffness factor BC gets modified. Assuming 
that the supports are locked, calculate fixed end moments. They are  

M AB
F

 =16 kN.m 
 

MBA
F

 = −16 kN.m 
 

MBC
F

 = 7.5 kN.m 
 

MCB
F

 = −7.5 kN.m , and 
 

MCD
F

 =15 kN.m 

 

In the next step calculate stiffness and distribution factors 
 

KBA= 

4EI 
 

 

8 
 

 
 

 3 8EI 
 K B C 

= 

4 6 
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K = 8IE 

 

CB 6 
 
 

At joint B: 
 

∑K  = 0.5EI +1.0EI   =1.5EI 
 

DBA
F

 = 

   0.5 EI  
 

1.5  EI = 0.333 
 

DBC
F

 

 1   .0  EI  
 

=  1.5  EI = 0.667 
   

At C: 

∑K   = EI,  DCB
F
  =1.0 

Now all the calculations are shown in Fig.18.4b  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This problem has also been solved by slope-deflection method (see 
example 14.2).The bending moment diagram is shown in Fig.18.4c. 
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Chapter  
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Moving Loads and  

Influence Lines 
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Instructional Objectives: 
 

The objectives of this lesson are as follows: 
• Understand the moving load effect in simpler term  
• Study various definitions of influence line  
• Introduce to simple procedures for construction of influence lines 

 

 

37.1 Introduction 

 

In earlier lessons, you were introduced to statically determinate and statically 
indeterminate structural analysis under non-moving load (dead load or fixed 
loads). In this lecture, you will be introduced to determination of maximum 
internal actions at cross-sections of members of statically determinate structured 
under the effects of moving loads (live loads). 

 

Common sense tells us that when a load moves over a structure, the deflected 
shape of the structural will vary. In the process, we can arrive at simple 
conclusion that due to moving load position on the structure, reactions value at 
the support also will vary. 

 

From the designer’s point of view, it is essential to have safe structure, which 
doesn’t exceed the limits of deformations and also the limits of load carrying 
capacity of the structure. 

 

 

37.2 Definitions of influence line 

 

In the literature, researchers have defined influence line in many ways. Some of 
the definitions of influence line are given below. 

 

• An influence line is a diagram whose ordinates, which are plotted as a 
function of distance along the span, give the value of an internal force, a 
reaction, or a displacement at a particular point in a structure as a unit load 
move across the structure.  

• An influence line is a curve the ordinate to which at any point equals the value 
of some particular function due to unit load acting at that point.  

• An  influence  line  represents the  variation of  either the reaction, shear, 
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moment, or deflection at a specific point in a member as a unit concentrated 
force moves over the member. 

 

 

37.3 Construction of Influence Lines 

 

In this section, we will discuss about the construction of influence lines. Using 
any one of the two approaches (Figure 37.1), one can construct the influence line 
at a specific point P in a member for any parameter (Reaction, Shear or 
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Moment). In the present approaches it is assumed that the moving load is having 
dimensionless magnitude of unity. Classification of the approaches for 
construction of influence lines is given in Figure 37.1.  

 

Construction of Influence Lines  
 
 

 
 

Tabulate Values 

 

for 

 

Influence Line-Equation 

  

    
 

    
 

    
 

       

      
 

       
 

 
 

37.3.1 Tabulate Values 
 

Apply a unit load at different locations along the member, say at x. And these 
locations, apply statics to compute the value of parameter (reaction, shear, or 
moment) at the specified point. The best way to use this approach is to prepare a 
table, listing unit load at x versus the corresponding value of the parameter 
calculated at the specific point (i.e. Reaction R, Shear V or moment M) and plot 
the tabulated values so that influence line segments can be constructed. 

 

37.3.2 Sign Conventions 
 

Sign convention followed for shear and moment is given below.  
 

Parameter Sign for influence line 

Reaction R Positive at the point when it acts upward on the beam. 

Shear V Positive for the following case 

 V 
 
 
 
 
 

 

Moment M Positive for the V case 
 

M 
 
 
 
 
 

 

M 
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37.3.3 Influence Line Equations 
 

Influence line can be constructed by deriving a general mathematical equation to 
compute parameters (e.g. reaction, shear or moment) at a specific point under 
the effect of moving load at a variable position x. 

 

The above discussed both approaches are demonstrated with the help of simple 
numerical examples in the following paragraphs. 

 

 

37.4 Numerical Examples 
 

Example 1: 

 

Construct the influence line for the reaction at support B for the beam of span 10 
m. The beam structure is shown in Figure 37.2.  

 
 
 
 
 

 

Figure 37.2: The beam structure 

 

Solution: 
 

As discussed earlier, there are two ways this problem can be solved. Both the 
approaches will be demonstrated here. 

 

Tabulate values:  
As shown in the figure, a unit load is places at distance x from support A and the 

reaction value RB is calculated by taking moment with reference to support A. Let 
 

us say, if the load is placed at 2.5 m. from support A then the reaction RB can be 
calculated as follows (Figure 37.3). 

Σ MA = 0 : RB x 10 - 1 x 2.5 = 0 ⇒ RB = 0.25 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 37.3: The beam structure with unit load 

 

Similarly, the load can be placed at 5.0, 7.5 and 10 m. away from support A and 

reaction RB can be computed and tabulated as given below. 
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x RB 
  

0 0.0 
2.5   0.25  
5.0   0.5  
7.5   0.75 
10 1  

Graphical representation of influence line for RB is shown in Figure 37.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37.4: Influence line for reaction RB. 

 

Influence Line Equation:  
When the unit load is placed at any location between two supports from 

support A at distance x then the equation for reaction RB can be written as 

Σ MA = 0 : RB x 10 – x = 0 ⇒ RB = x/10 

 

The influence line using this equation is shown in Figure 37.4. 
 

Example 2: 
 

Construct the influence line for support reaction at B for the given beam as 
shown in Fig 37.5.  

 
 
 
 
 
 
 
 

Figure 37.5: The overhang beam structure  

Solution: 
 

As explained earlier in example 1, here we will use tabulated 
values and influence line equation approach. 

 

Tabulate Values:  
As shown in the figure, a unit load is places at distance x from support A and the 

reaction value RB is calculated by taking moment with reference to support A. Let 
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us say, if the load is placed at 2.5 m. from support A then the reaction RB can 

be calculated as follows. 

Σ MA = 0 : RB x 7.5 - 1 x 2.5 = 0 ⇒ RB = 0.33 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 37.6: The beam structure with unit load 

 

Similarly one can place a unit load at distances 5.0 m and 7.5 m from support A 
and compute reaction at B. When the load is placed at 10.0 m from support A, 
then reaction at B can be computed using following equation. 

Σ MA = 0 : RB x 7.5 - 1 x 10.0 = 0 ⇒ RB = 1.33 

 

Similarly a unit load can be placed at 12.5 and the reaction at B can be 
computed. The values of reaction at B are tabulated as follows. 

x RB 
  

0 0.0  
2.5    0.33 
5.0    0.67  
7.5   1.00 
10 1.33 
12.5 1.67  

Graphical representation of influence line for RB is shown in Figure 37.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37.7: Influence for reaction RB. 
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Influence line Equation:  

Applying the moment equation at A (Figure 37.6), 

Σ MA = 0 : RB x 7.5 - 1 x x = 0 ⇒ RB = x/7.5 

 

The influence line using this equation is shown in Figure 37.7. 
 

Example 3:  

Construct the influence line for shearing point C of the beam (Figure 37.8)  
 
 
 
 
 
 

 

Figure 37.8: Beam Structure 

 

Solution: 
Tabulated Values: 

 

As discussed earlier, place a unit load at different location at distance x from 
support A and find the reactions at A and finally computer shear force taking 
section at C. The shear force at C should be carefully computed when unit load is 
placed before point C (Figure 37.9) and after point C (Figure 37.10). The 
resultant values of shear force at C are tabulated as follows.  

 
 
 
 
 
 
 
 
 

 

Figure 37.9: The beam structure – a unit load before section  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 37.10: The beam structure - a unit load before section 
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X Vc 
  

0 0.0 
2.5-0.16 
5.0-0.33 

 

7.5(-) -0.5 

7.5(+) 0.5 

10 0.33 

12.5 0.16 

15.0 0 

Graphical representation of influence line for Vc is shown in Figure 37.11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 37.11: Influence line for shear point C 

 

Influence line equation: 
 

In this case, we need to determine two equations as the unit load position before 
point C (Figure 37.12) and after point C (Figure 37.13) will show different shear 
force sign due to discontinuity. The equations are plotted in Figure 37.11.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37.12: Free body diagram – a unit load before section 
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Figure 37.13: Free body diagram – a unit load after section 

 

Influence Line for Moment:  

Like shear force, we can also construct influence line for moment. 
 

Example 4: 
 

Construct the influence line for the moment at point C of the beam shown in 
Figure 37.14  

 
 
 
 
 
 
 

 

Figure 37.14: Beam structure 

 

Solution: 
Tabulated values: 

 

Place a unit load at different location between two supports and find the support 
reactions. Once the support reactions are computed, take a section at C and 
compute the moment. For example, we place the unit load at x=2.5 m from 
support A (Figure 37.15), then the support reaction at A will be 0.833 and support 
reaction B will be 0.167. Taking section at C and computation of moment at C 
can be given by 

Σ Mc = 0 : - Mc + RB x 7.5 - = 0 ⇒ - Mc + 0.167 x 7.5 - = 0 ⇒ Mc = 1.25 
 
 
 
 
 
 
 
 
 

 

Figure 37.15: A unit load before section 

Similarly, compute the moment M c for difference unit load position in the span. 
 

The values of Mc are tabulated as follows. 
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X Mc 
  

0 0.0 
2.51.25  
5.02.5  
7.53.75 
10 2.5  
12.51.25 
15.00  

Graphical representation of influence line for Mc is shown in Figure 37.16. 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 37.16: Influence line for moment at section C 

 

Influence Line Equations: 
 

There will be two influence line equations for the section before point C and after 
point C. 

 

When the unit load is placed before point C then the moment equation 
for given Figure 37.17 can be given by 

Σ Mc = 0 : Mc + 1(7.5 –x) – (1-x/15)x7.5 = 0 ⇒ Mc = x/2, where 0 ≤ x ≤ 7.5 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 37.17: Free body diagram - a unit load before section 

 

When the unit load is placed after point C then the moment equation 
for given Figure 37.18 can be given by 

Σ Mc = 0 : Mc – (1-x/15) x 7.5 = 0 ⇒ Mc = 7.5 - x/2, where 7.5 < x ≤ 15.0 
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Figure 37.18: Free body diagram - a unit load before section 

 

The equations are plotted in Figure 37.16. 
 

Example 5: 
 

Construct the influence line for the moment at point C of the beam shown in 
Figure 37.19.  

 
 
 
 
 
 

 

Figure 37.19: Overhang beam structure 

 

Solution: 
Tabulated values: 

 

Place a unit load at different location between two supports and find the support 
reactions. Once the support reactions are computed, take a section at C and 
compute the moment. For example as shown in Figure 37.20, we place a unit 
load at 2.5 m from support A, then the support reaction at A will be 0.75 and 
support reaction B will be 0 .25.  

 
 
 
 
 
 
 

 

Figure 37.20: A unit load before section C 

 

Taking section at C and computation of moment at C can be given by 

Σ Mc = 0 : - Mc + RB x 5.0 - = 0 ⇒ - Mc + 0.25 x 5.0  = 0 ⇒ Mc = 1.25 
 

Similarly, compute the moment Mc for difference unit load position in 

the span. The values of Mc are tabulated as follows. 
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x Mc 

0 0 

2.5 1.25 

5.0 2.5 

7.5 1.25 

10 0  
12.5-1.25 
15.0-2.5  

Graphical representation of influence line for Mc is shown in Figure 37.21. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 37.21: Influence line of moment at section C 

 

Influence Line Equations: 
 

There will be two influence line equations for the section before point C and after 
point C. 

 

When a unit load is placed before point C then the moment equation 
for given Figure 37.22 can be given by 

Σ Mc = 0 : Mc + 1(5.0 –x) – (1-x/10)x5.0 = 0 ⇒ Mc = x/2, where 0 ≤ x ≤ 5.0 
 
 
 
 
 
 
 
 

 

Figure 37.22: A unit load before section C 

 

When a unit load is placed after point C then the moment equation for 
given Figure 37.23 can be given by 

Σ Mc = 0 : Mc – (1-x/10) x 5.0 = 0 ⇒ Mc = 5 - x/2, where 5 < x ≤ 15 
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Figure 37.23: A unit load after section C 

 

The equations are plotted in Figure 37.21. 
 
 
 

37.5 Influence line for beam having point load and uniformly 
distributed load acting at the same time 

 

Generally in beams/girders are main load carrying components in structural 
systems. Hence it is necessary to construct the influence line for the reaction, 
shear or moment at any specified point in beam to check for criticality. Let us 
assume that there are two kinds of load acting on the beam. They are 
concentrated load and uniformly distributed load (UDL). 

 

37.5.1 Concentrated load 
 

As shown in the Figure 37.24, let us say, point load P is moving on beam from A 
to B. Looking at the position, we need to find out what will be the influence line 
for reaction B for this load. Hence, to generalize our approach, like earlier 
examples, let us assume that unit load is moving from A to B and influence line 
for reaction A can be plotted as shown in Figure 37.25. Now we want to know, if 
load P is at the center of span then what will be the value of reaction A? From 
Figure 37.24, we can find that for the load position of P, influence line of unit load 
gives value of 0.5. Hence, reaction A will be 0.5xP. Similarly, for various load 
positions and load value, reactions A can be computed.  

 
 
 
 
 
 
 

 

Figure 37.24: Beam structure 
 
 
 
 
 
 

 

jntuworldupdates.org 
99 

Specworld.in 
 

 
 



 
Smartzworld.com Smartworld.asia  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 37.25: Influence line for support reaction at A 

 

37.5.2 Uniformly Distributed Load 
 

Beam is loaded with uniformly distributed load (UDL) and our objective is to find 
influence line for reaction A so that we can generalize the approach. For UDL of 
w on span, considering for segment of dx (Figure 37.26), the concentrated load 
dP can be given by w.dx acting at x. Let us assume that beam’s influence line 
ordinate for some function (reaction, shear, moment) is y as shown in Figure 
37.27. In that case, the value of function is given by (dP)(y) = (w.dx).y. For 
computation of the effect of all these concentrated loads, we have to integrate 
over the entire length of the beam. Hence, we can say that it will be ∫ w.y.dx = w ∫ 
y.dx. The term ∫ y.dx is equivalent to area under the influence line.  

 
 
 
 
 
 
 
 
 
 
 

 

Figure 37.26: Uniformly distributed load on beam  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 37.27: Segment of influence line diagram 
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For a given example of UDL on beam as shown in Figure 37.28, the influence 
line (Figure 37.29) for reaction A can be given by area covered by the influence 
line for unit load into UDL value. i.e. [0.5x (1)xl] w = 0.5 w.l.  

 
 
 
 
 
 
 

Figure 37.28: UDL on simply supported beam  
 
 
 
 
 
 
 
 
 

 

Figure 37.29: Influence line for support reaction at A. 
 

 

37.6 Numerical Example 

 

Find the maximum positive live shear at point C when the beam (Figure 37.30) is 
loaded with a concentrated moving load of 10 kN and UDL of 5 kN/m.  

 
 
 
 
 
 

 

Figure 37.30: Simply supported beam 

 

Solution: 
 

As discussed earlier for unit load moving on beam from A to B, the influence line 
for the shear at C can be given by following Figure 37.31. 
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Figure 37.31: Influence line for shear at section C. 

 

Concentrated load: As shown in Figure 37.31, the maximum live shear force at 
C will be when the concentrated load 10 kN is located just before C or just after 
C. Our aim is to find positive live shear and hence, we will put 10 kN just after 
C. In that case, 

Vc = 0.5 x 10 = 5 kN. 

 

UDL: As shown in Figure 37.31, the maximum positive live shear force at C will 
be when the UDL 5 kN/m is acting between x = 7.5 and x = 15. 

Vc = [ 0.5 x (15 –7.5) (0.5)] x 5 = 9.375 

 

Total maximum Shear at C: 

(Vc) max = 5 + 9.375 = 14.375. 

 

Finally the loading positions for maximum shear at C will be as shown in Figure 
37.32. For this beam one can easily compute shear at C using statics. 
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Figure 37.32: Simply supported beam 
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